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Dans ce travail nous ttudions l’existence et la convergence de variites 
inertielles pour la discretisation en temps d’equations d’evolution. Nous montrons 
que pour des pas de temps petits, et sous une condition qui assure l’existence de 
varietts inertielles exactes (condition d&cart spectral), le probleme disc&i& 
posdde une varitti: inertielle de mCme dimension. Nous montrons la convergence 
de la variett approchte vers la variete exacte dans un sens fort et avec estimation 
d’erreur. Nos applications comprennent des equations non dissipatives, elles ne sont 
pas limit&es au cas purement parabolique. C’est ainsi que nous considerons des 
equations d’amplitude du type Ginzburg-Landau et des perturbations dissipatives 
des equations de Kortewegde Vries. 0 1991 Academic press, IX. 

This work is devoted to the question of existence and convergence of inertial 
manifolds for evolution equations under time discretization. We show that provided 
the time step is sufftciently small and under the condition of existence of exact 
inertial manifolds (the spectral gap condition), the discretized problem do have an 
inertial manifold with the same dimension. We show the convergence of the 
approximated manifolds towards the exact one in a strong sense and we give an 
error estimate. Our applications include nondissipative equations, they are not 
limited to purely parabolic equations. We consider complex amplitude equations of 
the type of Ginzburg-Landau equation and also dissipative perturbations of 
Kortewegde Vries equations. c 1991 Academic Press, Inc. 
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0. INTRODUCTION 

Studies of the long time behavior of solutions to nonlinear partial dif- 
ferential equations have recently increased. Although this kind of problem 
arises from many branches of physics and mathematical physics, it is cer- 
tainly the problem of turbulence that has mainly motivated these studies. 
Partial differential equations (PDE’s) model systems with infinite number 
of degrees of freedom, i.e., systems whose complete description at a given 
time demands an infinite number of parameters. Hence evolutionary PDE’s 
produce infinite dimensional dynamical systems. 

A fundamental question then is whether or not the permanent flow (i.e., 
after a transient period) actually depends on a finite number of degrees of 
freedom. There are of course many ways to try to answer this question 
from a mathematical point of view. And it turns out that this research 
has led to introducing new concepts such as: attractors, global lyapunov 
exponents, determining modes, . . . . and very recently that of inertial 
manifolds [ 11, 9, 15,2] see the book by Temam [21] for a recent review 
on this subject. 

Let us write the evolutionary PDE under consideration as follows 

du 
dr’N(U), (0.1) 

where N denotes an unbounded and nonlinear operator on the infinite 
dimensional Banach space H where u = u(t) takes its values. The global 
attractor SS?, when it exists, is the unique compact subset of H which is 
invariant under the evolution (0.1) and attracts all the solutions. As is 
known, even for finite dimensional equations, i.e., ODE’s, & can be very 
complicated, and could have a complex topological structure. However, 
proving that ~4 has finite dimension, for example finite Hausdorff dimen- 
sion, and obtaining an estimate on this dimension in terms of the physical 
parameters, is a way to derive a bound on the actual number of degrees of 
freedom which is necessary to describe the permanent flows. 

Unfortunately attractors have two disadvantages. First, the speed of 
convergence of trajectories towards an attractor can be very small, allowing 
complex transients and “simple” attractors. Second, in general attractors 
are not stable with respect to perturbations (see below). Also, from the 
computational point of view, since these sets can be very complicated, the 
problem of approximating them is difficult. 

Inertial manifolds do not have these disadvantages. Indeed, these sets 
which are finite dimensional Lipschitz manifold invariant by the flow (O.l), 
attact exponentially the trajectories. They are stable to perturbations, as 
results in particular from this work. More precisely a splitting H = H, @ H, 
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being given, where H, is finite dimensional, an inertial manifold M= M, is 
searched as the graph of a function 4 : H, + H,. Denoting by P, the 
projection on the first factor, if M is invariant by (0.1) we must have 
u = p + 4(p), where p is solution to 

(0.2) 

when the initial condition is taken on M. Since the trajectories of (0.1) 
converge rapidly to M, it follows that the PDE (0.1) reduces to an ODE 
and the dimension of H, is a bound on the actual number of degrees of 
freedom. 

Investigations on the qualitative behavior of solutions to nonlinear 
evolution P.D.E.‘s are now mainly computational. For that purpose, 
systems of the type (0.1) are time-discretized, and replaced by iterations 
(i.e., discrete dynamical systems), for example, 

u n+‘=Un+zN,(U”), (0.3) 

where r >O represents here the time step. Under general hypotheses 
(mainly that (0.1) is dissipative, we shall define this latter) (0.1) admits a 
global attractor laz, and provided t is sufficiently small, (0.3) admits also a 
global attractor dr. As a result [ 14, 211 the correspondance r -+ ,& is only 
upper semicontinuous in 0, i.e., given a neighborhood V of d, JX?~ c V for 
sufficiently small r; the converse being false is general. It is what we meant 
when we said that attractors are not stable to perturbations. 

An inertial manifold M, = M, for (0.3) is then the graph of a Lipschitz 
function 4, from H, into H,, invariant by (0.3), i.e., if U’E M, then 
U’ EM,, Vn 3 0, and which attracts exponentially the solutions of (0.3). 
Taking u” = P, u” + 4, (P, u”) E M,, we have p” = P, u” and 

P “+‘=p”+tP,N,(p”+~,(p”)). (0.4) 

Now (0.4) is a discrete, finite dimensional dynamical system, fitted for 
numerical investigations. Its long time behavior, i.e., as n + + co, will 
represent that of (0.1) if the inertial manifolds are close. 

The question of approwimating (0.1) by (0.3) on large time intervals is 
not an easy task, indeed, recall that classical error estimates (even for 
ODE’s) are of the form 

Ilu(nz) - ~“(1 < CT’, O<n<N, 

where r is the order of the method, but the constant C grows exponentially 
with N and therefore as n + + w this estimate vanishes. Moreover, in 
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systems of interests, (0.1) presents sensitivity to initial conditions and then 
it is expected that indeed u(nz) - z/ is not small for large n, as small as r 
is (see Beyn [l] for positive results in the neighborhood of an hyperbolic 
fixed point, in the ODE case). 

Before describing the results of this work which pertain to these ques- 
tions, we recall that (0.1) is said to be dissipative if the following occurs. 
Let S(t) denote the semi group of solutions to (O.l), i.e., u(t) = ,S(t) u(O), 
V t > 0. A bounded set B, in H is said to be absorbing for {S( t)}t, 0 in H 
if for every set B bounded in H, there exists T(B) Z 0 such that S(t)B c B,, 
V t > T(B). Then (0.1) is dissipative if S(t) possesses a bounded absorbing 
set. 

The main results of this work are as follows. We show for the class of 
evolution equations (0.1) that we consider, that suitable discretisations (0.3) 
possess inertial manifolds. The dimension of this manifold A.!,, i.e., the 
splitting of H, can be taken the same as for that of the continuous equation 
M. Furthermore we show that M, and M are close in a strong sense, 
i.e., if we denote by M= M, and M, = M,, we give an error estimate on 
the norm of the difference 4 - dr. Finally two classes of applications are 
given. These are the following: a class of complex amplitude equations 
(Ginzburg-Landau like PDE’s) and equations related to the Korteweg- 
de Vries-Burgers equations. We note that our setting is not limited to 
dissipative equations, as it was in previous works on this subject. Moreover 
we can sometimes consider the original PDE without using modifications 
of the nonlinear terms in (0.1). 

The main results of this work have been announced in a Note aux 
Comptes Rendus [22]. 

1. THE CONTINUOUS CASE 

In this section we give the precise hypotheses on the abstract framework 
we shall use. Also we briefly set the problem and give in Theorem 1.1 a 
condition (similar to that in [ 11, 9, 211) which ensures the existence of an 
inertial manifold for (0.1). The principle of the proof of Theorem 1.1 is 
rapidly pictured, mainly in order to introduce some notations we shall need 
in the remainder of the paper. 

1.1. Notations and Setting of the Problem 

We are given on an infinite dimensional real separable Hilbert space H, 
with norm 1. ) and scalar product ( ., . ), a linear closed unbounded positive 
self-adjoint operator A in H with domain O(A)c H. We assume that 
u + /Avl is a norm on D(A) equivalent to the graph-norm and that A is an 
isomorphism from D(A) onto H, A -’ being a compact operator on Z-Z. 
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Hence there exists a complete orthonormal family { wj},“= I in H made of 
eigenfunctions of A, 

(1.1) 

where the Aj’s are the associated eigenvalues repeated according to their 
multiplicity. We denote by a(A) = (Ak>pz 1, A, -c A, < ... the set of dis- 
tinct eigenvalues, A, being of finite multiplicity mk. The spectral projectors 
R, and P, are defined as usual 

R,v= 1 (v, wj) w,, P, = 1 R,. 
j:A,=A i. < A 

Recall that, given f: @ + @, the operator f(A) is defined as 

(1.2) 

f(A)=~f(4R,v with D(f(A))= v, 1 If(A (R,ul’< cc . 
A i A 1 

We are also given C, a linear bounded and squew-symmetric operator 
from D(A”O), S,,E rW: into H. We assume that CG 2’(D(A”+““), D(A”)) for 
every a E [w and C and A commutes: 

AC = CA. (1.3) 

It follows that C, = R, C maps R, H into itself and since this space is finite 
dimensional, C, is simply a squew-symmetric matrix. It is therefore also 
possible to define f(C), for f as before. We note that sometimes we need 
to consider the complexification H, of H, but we shall denote by the same 
symbols an object and its complexification. This should not produce any 
confusion. 

We consider the following differential equation 

du 
~+Au+Cu+F(u)=o, (1.4) 

40) = uo, (1.5) 

where F is a Lipschitz function from D(A’) into D(AmpY) for some given 
cr~(w and YE [0, $1, 

IA-V(U)-F(w))l.GLF Iv--l,, Vv, w E D(A”), (1.6) 

where here and in the sequel we denote by 

(v, w), = (A%, AC(w), IvI, = IA% 
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the scalar product and norm on D(A”). For convenience in the notations 
we shall assume that L, in (1.6) has been chosen in order that we also have 

IA ‘F(u)l, d L,(l + ILlI,), VI) E D(A”). (1.7) 

Following [ 111, an inertial manifold for (1.4) is a finite dimensional 
Lipschitz manifold M c D(A’) which enjoys the following properties. This 
set is positvely invariant by (1.4) and attracts exponentially all the solu- 
tions, i.e., 

u,EM=u(t)EM, vt>o, (1.8) 

VR>0,30>O,C3OsuchthatVt~O,u,~D(A”) 

with lu,j,<R, d,(u(t),M)= Inf lU(t)--ml.dCeP”‘. (1.9) msM 

The hypothesis (1.6) seems very restrictive, at least at first sight. Besides 
the fact that for some applications this holds true, actually one proceeds 
in a similar fashion as for the study of invariant manifolds in the 
neighborhood of a fixed point and uses the truncation method to derive 
(1.6) from the original equation. Loosely speaking, considering a nonlinear 
dissipative equation that admits a bounded absorbing set B,, the genuinely 
nonlinear terms are modified outside of B, in order that (1.6) holds true. 
Hence, since the long time behavior of the original equation is the question 
we aim to consider, this procedure leads to a relevant problem (see the 
applications for the precise construction). 

Due in particular to (1.6), it is well known that for u,ED(A’), the 
Cauchy problem (1.4k(1.5) admits a unique solution with 

UE+q[O, +co[;D(A*))nL2(0, T,D(A”“‘*)), VT>O. (1.10) 

Moreover if u0 E L)( A” + ‘I2 ), this solution is more regular: 

UE%([O, cc1[;D(A”+“*))nL*(0, T;D(A”+‘)), VT>O. (1.11) 

We denote by S(t) the time t map on D(A”) or D(A”+ ‘I*), 

S(t)% = 4th t 3 0. (1.12) 

These mappings are Lipschitz continuous and bounded on D(A”) and 
D(A a + ‘j2) and since (1.4) is automnomous the family {S(t), t 2 0} forms a 
semigroup, 

S(O)=I,S(t,+t,)=S(t,)S(t,). (1.13) 
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1.2. Construction of an Inertial Manifold 

For A E a(A), we set for the sake of simplicity in the notations, P = P,, 
Q = I- P,. The inertial manifold A4 is searched as the graph of a 
lipschizian function from PH into QO(A”), 

M=M,= {P+&J), PEPHI. (1.14) 

Besides the fact that all the methods presently known for constructing such 
manifolds lead to this type of set, this form is suitable from a practical 
point of view since by (1.8) the semi flow S(t) reduces on M to a flow. 
Namely the flow of the ODE 

(1.15) 

Indeed, thanks to (1.3), P and C commutes and 

S(t) M, = M,, Vt>O (1.16) 

shows that p = p(t) = Pu(t) must satisfy (1.15) for nonnegative t. But now 
(1.15) is a finite dimensional ODE on PH and since 4 is Lipschitz it follows 
from (1.6) that (1.15) possesses global solutions which are defined on the 
whole real line. This induces a group on PH, 

S,(t)Po = P(t), P(O) = Pai VteR. (1.17) 

Therefore we have 

S(t)M, = M,, VtE[W, (1.18) 

where 

S(t)(m, #(m,> = {S&h W,Wm)L VmEM,, V E R. (1.19) 

Let us now state a result of existence of such invariant manifolds. This 
theorem slightly generalizes previous results [ 11, 9, 211 in various direc- 
tions: we do not assume that either F is uniformly bounded or F(u) 
vanishes for large 1~1~; we are able to consider the case C#O. We also 
include a C’ smoothness result. 

THEOREM 1.1. Zf N satisfies 

A N+ 12 3L;Ay-‘12, 

‘4 N+l -AN 2 30L,(/Iy, + A;+ ,), 
(1.20) 
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then there exists 4 E V(P,,, H, (I- P,,,.) D(A”)) such that 

I4(P1)-~(Pr)l.~ lP1 -p*lz/4> VP,, PZEP,,,H (1.21) 

and M, is an inertial manifold,for (1.4). Furthermore if‘ F is a C’ function 
from D(A’) into D(A’-~;‘), then 4 is C’ from Pn,vH into (Z-P,,) D(A”). 

Remark 1.1. The dimension of M, is Cy= , m,. 

We briefly give the main steps of the proof of this result, refering to [S] 
for a complete proof. The main goal of what follows is to introduce some 
notations and complementary properties which we shall need in the 
remainder of this article. 

Given ZE [0, CC [, we denote by & the following set of functions from PH 
into QD(A”), 

where 

(1.22) 

llill.=~~~~I~~~~l.l~~+ IA,), PEPHI, (1.23) 

and 

~ip,(rb)=~~p~I~~,)-~(~,)l.ll~, -PA, P~EPH}. (1.24) 

For 4 given in &, we can solve (1.15) and construct by (1.17) the mappings 
S,(t) on PH. 

We set 

(F#)(p,)= -Sr, e(A+C)rr QF(S,(of PO +4(%(o) ~0)) da> (1.25) 

and this defines a map from 4 into %(PH, QD(A”)) as soon as 
A N+l > /1, + nyNL,(l + 1). It is easy to check that if M, satisfies (1.18), it 
is necessary that Sd = 4. And, indeed, 4 is found as a fixed point of F in 
.F 1,4: the main consequence of (1.20) is that F maps &,d into itself and is 
strictly contracting on this set. This allows us to construct M,. The 
exponential attraction property (1.9) is not a byproduct. It follows from a 
property that enjoys (1.4) under (1.20): the cone property. This property 
was introduced in [9]. It can be phrased as follows. We denote by VK the 
cone in D(A*), 

Y= {vED(A% IPul,2~ IQuI,}. (1.26) 

We say with [9], that (1.4) enjoys the (e,-cone property if %$ is stable by 
S(t) (see (1.27) below) and considering two trajectories u,(t) and u?(t) of 
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(1.4) only two situations can occur: either u, (t) - u2 (t) enters in a finite 
time in VK or A”(u, - Z.Q) tends to zero exponentially as t -+ + co. The 
stability property quoted above is 

u1(0)-u*(O)E~~~UI(t)--UZ(t)E~~:,, Qt>O. (1.27) 

Now under condition (1.20) it turns out that (1.4) has the %$-cone 
property and there exist two constants K and u > 0 such that 

d,(S(t) UO? M,) d Kd,(uo, M,) e-Or, Qu,~D(A~),Vtt30. (1.28) 

This property shows (1.9). Actually (1.28) is stronger. 
Finally the smoothness result on 4, i.e., that 4 is in fact a C’-function, 

is obtained by using a fiber contraction theorem (see, e.g., [19]). We refer 
to [S] for the details. 

2. CONSTRUCTION OF AN INERTIAL MANIFOLD IN THE DISCRETE CASE 

In this section we replace the continuous Eqs. (1.4)-( 1.5) by numerical 
schemes. This produces discrete dynamical systems on an infinite dimensional 
space. Under the condition of existence for an inertial manifold in the 
continuous case stated in Theorem 1.1, we construct inertial manifolds for 
the discrete equations. 

2.1. The Self-Adjoint Case 

In this section we consider the case where C = 0. Apart from the fact that 
it is a relevant case in view of the applications, the results we prove here 
are of interest for the general case we shall address in Section 2.2. 

2.la. A Semi-Implicit One Step Method. Given u” E D(A”) and z > 0, we 
introduce the sequence (u”, n E fV} c D(A”) by the formula 

(U n+l- u”)/T + Au” + ’ + F( Us) = 0, n 2 0. (2.1) 

Since the operator (I+ rA) is an isomorphism from D(A’+‘) onto D(A”), 
we can set 

R(z)=(I+sA)-’ (2.2) 

and rewrite (2.1) as 

u n+l =R(z)(u”-zF(u”)), QnaO. (2.3) 

Our aim in this section is to find a function 4, mapping PH into QD(A*) 
and such that M, = M, is an inertial manifold for (2.1). For the moment, 
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P= P,V, where N is arbitrary. But as a result, we shall prove that, provided 
N satisfies the hypothesis of Theorem 1.1, we are able to consider the same 
splitting of D(A”) as in the continuous case: P,,,D(A”)@Q,D(A”). 

The mapping S’ on D(A”) 

S’U = R(T)(V - TF(U)), VvcED(A”) (2.4) 

is Lipschitz-continuous thanks to (1.6). By mimicking the continuous case 
we set the following definition. 

DEFINITION 2.1. With the previous notations, an inertial manifold for 
(2.1) is a finite dimensional Lipschitz manifold M c D(A”) which satisfies 

S’M c M, 

VR>O, 3a>O, C>Osuch that 

(2.5) 

d,((S’)“u”,M)=d,(u”,M)dCe~““‘,Vu30,Vu30,~u~.bR. (2.6) 

In the discrete case, too, M will be searched as the graph of a Lipschitz 
function # and therefore the infinite dimensional recursion formula (2.1) 
will be replaced on M= M, by the finite dimensional iteration 

(P n+‘-pn)/t+Apn+’ +PF(p”+qqp”))=O. (2.7) 

This can also be written as 

P n+‘=s;pn, n 3 0, 

where S; is the Lipschitz continuous map on PH defined by 

S; P=R(~)(P-~PF(P+#(P))). 

(2.8) 

(2.9) 

Taking #E%, i.e., assuming that 4 is I-Lipschitzian, it is clear on (2.9) 
that S; can be inverted for small r. More precisely, one easily verifies the 
following result: 

LEMMA 2.1. For q8 E 4 and provided 

o<z<L,‘(l+I))‘A,‘, (2.10) 

the mapping S; is a homeomorphism of PH, P = P,. Moreover S; and 
(S;) -’ are Lipschitzian on PH. 

When (2.10) holds, we deduce from this lemma that for M= M, (2.5) is 
equivalent to 

(S’)“M= M, VneH, (2.11) 
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and (compare with (1.19)) 
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(qw + 4(m)) = (s;)“m + WgW? Vn E Z, Vm E M,. (2.12) 

2.lb. Existence of an Inertial Manifold. In this section our first aim is 
to derive the necessary form of C$E 4 such that (2.11) holds true for 
M= M,. For we take u” = p” + ~#(p”) E A4 and project (2.3) on PH and 
QH. Setting p” = (.S;)“p’, q” = i( p”), we find 

P “‘l=R(r)(p”-TPf;(p”+~(p”)), n E Z, (2.13) 

4 ““=R(z)(q”-sQF(~“+~(p”)), n E H. (2.14) 

From this last relation it follows that for m <n, 

qn=R(s)“-“q”-t f R(z)“+l~kQF(pk~l+~(pk~l)). (2.15) 
k=m+l 

We are going to see that provided A - ;1 is sufficiently large and r is 
sufficiently small (see (2.23)-(2.24) below), the first term in the right hand 
side of (2.15) converges towards 0 as m -P -co leading to 

q”= --z i R(T)“+‘-~QF(~~-‘+&~~-~)), VnEZ. 
k= -cc 

Taking (2.16) for granted, we see that since q” = d(p”) we have 

d(p”)= --z y R(z)kQF((S’,)-kpo+&S;)-kpo). 
k=l 

Introducing the mapping z on 4, z satisfying (2.10), 

(O)(P”) = --5 1 &)kQF((s;)-k~o + ~W;)-“P~)), (2.18) 
k=l 

(2.16) 

(2.17) 

we see that (2.17) reads 4 = Yrd and show that 4 can be searched as a fixed 
point for FT. We note that this formula is the analog of (1.24). Indeed the 
convergence results proved in the third section are based on the fact that 
J< converges towards Y as z + 0 in a suitable sense, see, for example, 
(3.20). 

The main result of Section 2.1, which provides existence of an inertial 
manifold for the scheme (2.1) is as follows. 

THEOREM 2.1. We assume that N 2 1 is such that 

A N+1>3L$4:Y-1/2, 

A ,+,-n,>,30L,(nY,+nY,+1)’ 
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For every 5 > 0, such that zA N+ , < 1. the discrete infinite dimensional 
dynamical system on D(A”), 

rr + 1 
(u - U")/T + Au” + ’ + f’(u”) = 0, n 3 0. 

possesses an inertial manifbld M, which is the graph of a Lipschitz mapping 
from P,H into Q,,,D(A”). Furthermore, there exists two constants cu and 
CJ > 0 such that 

d,(u”, M,)dc,e~““dl(u”, M,), Vu’ E D(A”). 

The proof of this result is given in Section 2.le. In the next section, we 
begin by giving a sufficient condition that allows us to find a fixed point 
for the mapping FT on 4 (Proposition 2.1). This produces a natural 
candidate for the manifold M, in Theorem 2.1. Then Section 2.ld is 
devoted to the study of the norm of the difference of two solutions to (2.1) 
(Proposition 2.2), having in mind to show the exponential attraction 
property of M,. These two Propositions, besides their own interest, are the 
main ingredients in the proof of Theorem 2.1. 

2.1~. Construction of an Invariant Manifold. We are going to show that 
for sufficiently small T, the mapping Fr is a contraction on F&, and this 
provides the existence of an invariant manifold M, = M,, where 4, = F7q5,. 

PROPOSITION 2.1. We assume that N satisfies 

A N+l-AN>6LF(Ah(1 +l)+A;+,(l+f-‘)). 

Then for every t > 0 such that 

TA Nf,Gl, 

the mapping Y7 maps 4 into itself and 

IlZh- -wZlla d K lM1- hlla, v4iE%“r, 

with rc=1(2+(1 +I))‘). 

(2.19) 

(2.20) 

(2.21) 

Taking 1= b, we deduce the following 

COROLLARY 2.1. We assume that N satisfies 

A N+,-nNa loL,(/Iy,+n;+,). 

Then for every z > 0 satisfying (2.20), the mapping Fr is a strict contraction 
from 9&4 into itself: 
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Before giving the proof of Proposition 2.1, we derive an estimate on p” 
satisfying (2.13): 

LEMMA 2.2. We assume that (2.10) holds true and set 

~=(l+Vf,)(l-tn$%F(l+z)))l, 

j?=rYL,(l +Z)(1 -tYLF(l +Z))-i. 

The solutions of (2.13) satisfy 

IPml~~ll-m IPOla+PWrn- l)/(v- 11, VmGO. (2.22) 

Wesethereandinthesequel,1=A,,~=/1,+,,P=P,,Q=I-PN= 
QN. We rewrite (2.13) as 

R(z)-‘p”+’ = P” - TWP” + d(P”)). 

The scalar product of this identity in D(A”) with p,, leads to 

IP”I~~z(pF(P”+~(P”)), p”L+(l+t~) lP”la IPn+lla. (2.23) 

Then using (1.6) and (1.7) we find, since 4 E%;, that 

IA-Y~(P”+~(P”)l.~~,(l +Ml+ IP”Id 

Hence 

I(p~(P”+4(P”),P”Ll GIIzyLF(l +Nl+ IP”IJ lP”l,, 

which produces with (2.23), 

IP”lczdV lPn+‘la+B, 

where rl and /? are given in Lemma 2.2. Then the formula (2.22) follows 
readily by induction on m d 0. 

In deriving the necessary form of an inertial manifold, we have assumed 
in (2.15) that R(z)“Pmqm goes to 0 as m + - co. It is a consequence of 
(2.19) and (2.22). Indeed, by (2.22) and the fact that de&, there exists a 
constant C such that lqml, =&pm)1 < Cq-“. On the other hand 
IR(z)“-“ql,<(l +zn)m-n lqlE for q E QD(A”); therefore 

~R”~“q”~.~C(l+z/i)“((l+zn)/~)m. (2.23)’ 

Finally we note that 

~/l~l,n-~>21YL,(l+I)~l+r/i>rl. 

And this proves our claim. 

(2.24) 

409/155/l-13 
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We are now in a position to prove Proposition 2.1. We take q5 E fi and 
assume that (2.19) holds true: 

/CE.>6L,((l+I)E,:‘+(l+i ‘)/I?). (2.25) 

It follows that A’> 2(1 + [) L,i.’ and thanks to (2.20) (2.10) holds true. 
This allows us to define FT by the formula 2.18) since (2.24) is now 
satisfied. It is in fact convenient to rewrite this formula as 

(K-,dNp’)= --z i fWkQG,Wk), 
k=l 

(2.26) 

where p -‘= (S;)-kpo and 

G,(P)=F(P+~(P)). (2.27) 

In order to prove Proposition 2.1, we have to show that (i) FT maps % 
into itself and that (ii) Fr verifies (2.21). This leads us to consider the 
expressions F7q51 - Frd2 and (Frq5)py - (FT;i) pz. With regards to (2.26), 
we have to estimate 

(hP)k = (q,)“PY - (S;JkP;, k<O. 

This is done in the following lemma whose proof is postponed. 

(2.28) 

LEMMA 2.3. With the hypotheses and notations in Lemma 2.2, (6~)” in 
(2.28) is estimated as 

I(~P),lE~V” IP?-P;la 

-W”m(l +I)-’ llh -hlla(l + IdI,), Vn<O. (2.29) 

We take q5 E 4 and py, pt E H. According to (2.26), 

(K&(P:)-(Z~)(P;)= --t f NT)~Q(G+(P,~)-G,(P;~)), 
k=l 

then using ( 1.6) and (2.29) we find 

(2.30) 

The norm in Z(D(A*)) of the operator AyR(r)kQ, k3 1, is bounded as 
follows, 

IA’R(r)kQl ~~D~Az~+4Y+~?k- ?)(l +7/I--” (2.31) 
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which follows in turn from the inequality 

~~(l+z~)~k~(/iY+Z~Yk--Y)(l +z/i)-k 

valid for < > A, k 2 1, y E [0, $1 and z > 0. Hence (2.30) and (2.31) show 
that 

where 

O=d,(l+~) f (/iY+Z-YK-y)?jk(l+T/l)-k. 

k=l 

(2.33) 

Our aim now is to prove that 

{Eq.(2.25)andr.4dl}*wd1. (2.34) 

We set r=ry(l +7/l)-’ and claim that r < 1. Indeed this is equivalent to (‘I 
is given in Lemma 2.2) 

which holds true thanks to (2.20) and (2.25). Returning to (2.33) we have 

w d rL,( 1 + I) E+T-~ f kpyrk . (2.35) 
k=l 

The infinite sum is bounded by the integral sO+m xpyrX dx = 
ILog rl’-’ So+03 xpy eCX dx<2 lLogrlY-’ and this leads to w<rL,(l +I) 
{Br/(l -r)+2rPYJLogrjY-‘1. Then, since jLogr( 2 1 -r, we find 

o<zL,(l+Z) 
{ 

fi+27Cy(l-r)YP1 , 
I 

and using that 1 -r < r/i, we conclude that o< 3rL,(l+ I) AY(l -r)-‘. 
Reporting the value of r, we finally have 

o< 3L,(l+l)N(l+TA) 
‘A-I-PLF(l +1)(1 +r/i)’ 

(2.36) 

and (2.34) follows readily. In view of (2.32), we have shown that 
Lip,(Vr(4) d 1. In order to show that KCJS E 4, it remains to verify that 
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1 (z 4)( pO)l cT < I( 1 + 1 p”j .), for every p” E PH. This calculation is almost the 
same as before. Indeed, by (1.7) and (2.26) we have 

I(O < ~(1 + 4 Lp : l.@‘~WQI,~,,,p,,U + IP -?s). (2.37) 
&=I 

Thanks to (2.22), we have 

1 + IPL G vk(l + IP”la)r Vk>O. (2.38) 

Reporting this estimate in (2.37) and using (2.33) we find IZ&p”)I, d 
o(1 + lp’/,). Thanks to (2.32), we conclude that .JQ E 4. 

Concerning the inequality (2.21) in Proposition 2.1, we proceed as 
follows. We take 4 i , ~5~ E 4 and py = p: = p” E PH. According to (2.26), 

C%MP”)-LW~(P”)= --z f R(z)kQ(G,,(~;“)-G,,(~;k)). (2.39) 
k=l 

We write 

and deduce the following estimate 

IA-Y(G,,(~1)-G~2(~2))lol 

G,{(1+U IP,-p2la+ 11~,-~2/la(l+ lP2lJb (2.40) 

Hence by (2.29) and (2.38) with py = pi = p”, 

IA-‘(G,,(P,~)-G~~(P;~))II~LF(~+~B)~~ ll41-~2ll~(1+I~~la)~ 

We return to (2.39) and make use of (2.31) together with the last estimate. 
We find 

IlZd, -~42//,603 II41 -Mm 

w=zL, 2 (/lY+z-‘/k-Y)(l +rn)-kqk(l +kp). 
k=l 

(2.41) 

Comparing with (2.33), we have 

O=w(l+I)-‘+rL,p f k(,47+z-7kpy)rk, 
k=l 

(2.42) 

r=q(l +tn)-‘. Using (2.34) and CF=, krk=r(l -r’)-l, we find 

o~Z(1+I)-1+zL,P(rn’(l-r2)-1+T~aZ) 
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with Z = CF=’ k-(‘-Y)rk < dew x --(l-y)rxdx < ILogrlY-2 < (1 -r)Y-? 
Hence, making use of the fact that rn < 1, 

o<Z(l+Z))‘+rL&-‘n~(r(l-r2)-‘+(1-r)-*). 

Then, reporting the value of r and thanks to the inequalities r/( 1 + r) < f, 
rL,(l+Z)AY~Z(l-r),j?~-‘~l andr/i<l, wefind 

wdZ(l+Z)-‘+2z. -(2.43) 

This achieves the proof of Proposition 2.1. Concerning that of Lemma 2.3, 
we deduce from (2.13) and (2.18) 

NV’~~PL+1 = (b)n + WW + 951 (P;)) -0’; + 42(~;))). (2.44) 

We bound in D(A”) the term involving F by 

~yL((l +I) I(~P ll4l-$*ll (l+ IP;IJ)> 

and then the scalar product of (2.44) with (&I), leads to 

1(6P),l,(l -zAYLAl + 0 

Thanks to Lemma 2.2, 

l+IP;Iad~-“(l+IP~Isr)+ol-~--l)(B(r-l)-l-l), 

and since B(~z - 1) ~ ’ < 1 we conclude that 

l(b)“l,drl l(&J)n+llcr+W”(1 +I)-’ 1141 -~*llw(l+ IdI,). 

Finally (2.29) follows by induction on n. 

2.ld. The Discrete Cone-Property. Let us first study the behavior of the 
difference of two solutions to the discretized Eq. (2.1). We take ~7 and U! 
in D(A’) and set w” = U; - u;. Our aim is to estimate wn, n 2 0, in terms 
of w” and n. According to (2.1) 

R(*)-lw”+’ = wn-z(F(u;)-F(u;)). (2.45) 

The scalar product of (2.45) with w”+’ then leads to 

Iw”+‘l;+T I.4 l’Z~n+lI;< Iw~+~J~ Iw~~~+~L~IA~w”+~I~ IwnJa, (2.46) 

hence using that (Ayw”+’ Ia <,4-“’ (A1’2~“+1(a, we find 

lwn+q;< lWnlo, Iw”+’ lm+z(L,A;p [Wnlc, (A”2W”+1(a- IA”*w”+‘I;). 
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It follows that 

111’ “+‘I;<(1 +TL;./l:‘~ ‘/2) iMl”I$ Vn>O, 

where we have used the inequality x2 - Lb A:; ’ 2.uy 3 - Lf.A:;’ ‘~,‘/4. This 
shows that 

lu~-u;l.6(1+tL~./i:‘l”/t)“-2lu:‘-u~l., Vn>O. (2.47 ) 

This estimate allows exponential divergence of discrete trajectories which 
is a general feature for trajectories of the dynamical systems we consider in 
this work. However, as we shall see later in Proposition 2.2, a couple of 
trajectories that diverge must lie inside a cone in D(A*) after a dinite 
transcient. Moreover those which do not are squeezed. This kind of result 
in the context of infinite dimensional dynamical systems was introduced by 
Foias-Temam [12] in their study on the Navier-Stokes equation. The 
more accomplished result in the case of continuous dynamical systems, 
referred to as the cone property in the first section, is due to Foias, 
Nicolaenko, Sell, and Temam [9]. In the discrete case, we prove 

PROPOSITION 2.2. We are given K > 0 and assume that N satisfies 

A N+,-AN>~L,((~+K ‘)n;+(l+K)/1;+,). (2.48) 

Then for every ‘5 satisfying (2.20), the cone VK in (1.26), where P= P,, 
Q = I- P, is invariant by (2.1), i.e., 

I~u~-u~E%$ then u’,‘-M;E~~, Vn>C. (2.49) 

Moreover, we have the following alternative : either 

3k>O, l.4; -u; E ‘ik; (2.50) 

or 

lU’;-U;l~<(l + l/K)p” b&f& Vn30, 

p=(l+t(l+K)L,nY,+,)(l+T~N+l)-‘<l. 

(2.51) 

Proof: We begin by (2.49). For we are given uy , ui E D(A”) with 
u~-uieSf$, i.e., lp”loB~ lq”la, where p” = P(uy - ui), q” = Q( uy - u:). 
Our aim is to show that 

IP11a3K Idaa (2.52) 

where p’ = P(u: - ul), q1 = Q(u: - ~4:). Using (2.1), we have 

R(z)-‘p’ = p”- tP(F(u:) - I;@)). 
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The scalar product of this relation with p” in D(A”) gives 

(1 +zA) lP1la IP01m2 lP°C-T I~-‘www%4))l, Lo012, 

and using (1.6) we find 

(1 +Tn) lP1la IPoD IPOIf-~W’ I+& IPOIM. 

Now since (~‘1~ > K jq”l. it follows that 

IPolE 
1 $rl 

1 - zL,( 1 + l/k.) 1” lA-1K IO49 (2.53) 

and we note that (2.20) and (2.48) implies that qK ~4. Concerning the 
components in QD(A”), we return to (2.1) and deduce 

R(T)q’ = q” - TQ(F(u:) - F(u;)). 

The scalar product with q1 in D(A”) leads to 

/qy+2 IA”*q’I;< /qOlx lqlla+tLFIU~--~/r/iY~“* IA”*q’l,. 

Then using that I p”la 2 K lq”la and (2.53) we obtain 

lqlt;+ T lA”*qll: 

< lq”lm (qlll+zL,(l + l/rc)rl,Ay -l’* IA1’2q11r Ip’lm. (2.54) 

We claim that thanks to (2.20) and (2.48), this inequality implies (2.52). 
Indeed, if not, we have fq’(,>rc-’ IpllU thus 

(A1’*qlla>A1’* lq1(&4”2rc-1 Iplla 

>A,(1 +tc-‘) q,AY-“2 jp’lJ2 (by (2.48) and qK d 4). 

Then we can replace I,41/2q’la in (2.54) by Al/* lqllr, 

(l+rA) Id% kOla Wl.+rL,(l +K-‘)q,n’ lqlla Iplla. 

Using that K )q”lz< )p”Jti< Ip”Ir6r, JplJor we conclude that 

(1+7/i) lq’la~(~KJC-l+ZLF(l+K~l~yl~/iO!) IplIz. 

Finally (2.20) and (2.48) implies (2.52) and the proof of (2.49) is achieved. 
Concerning (2.51), we assume that ~7 -u’; I# VK, Vn 3 0, i.e., 

lP”Ix:dk- 14nla, p” = P(ul- u;), q” = Q(u; -u;), Vn>O. (2.55) 
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We are going to prove that 

w+‘lmdP 147a> Vn>O, (2.56) 

which shows (2.51) according to (2.55). The scalar product of (2.1) with 
4 n+ ’ leads to 

Iq”+‘l;+ jA”‘q”+‘j; 

dlq”l, lqn+ll~+~LF/~;--;l~ lAyqn+ill, 

Iq”+‘lz+ (A”*q”+‘(; 
(2.57) 

d lq”la 1q”+il.+rL,(l +K)AY-1’2 Iq”1, (qn+‘la. 

If (2.56) does not hold, then 

Ik’2qn+‘I.>A”’ Iq”+‘I.apA”* lq”l, 

>LL,(l +rc)A*-“2 1q”l,/2, (by (2.20) and (2.48)) 

and we can replace jA1’2q”+11a by A”’ Iqn+l(m in (2.57): 

(l+zA)/q”+‘l.~~q”la(l+tL~(l+K)/lzf. 

This is exactly (2.56). 

2.le. The Proof of Theorem 2.1. We label the hypotheses on N in 
Theorem 2.1 as follows 

A N+, ~3L$d;~-‘/2, (2.57)’ 

A Ntl -AN>30L,(A;+Ay,+,). (2.58) 

Let us take I= a and K = 4, then (2.58) implies (2.19) and (2.48) and the 
conclusions of Corollary 2.1 and Proposition 2.2 hold true. Hence we have 
found a fixed point 4, of Yr in S& and (2.50), (2.51) are satisfied for &, 
In order to achieve the proof of Theorem 2.1, we have to show the 
exponential attraction property (which is stronger than (2.6)). 

For, we take u”~D(Aa) and denote by U’E M, a point such that 
d,(u’, M,)= lu”- u”lo,. We set u’= (S;r)n~o and v”= (S;r)vo= Pv”+ 
c,d,(Pv”). We first note that (2.57), (2.58) and the fact that zA < 1 leads 
(after some tedious calculation) to 

(1+zL;A~-1/2)(1+(1+~)LFAv)<(1+tA), K = 4. (2.59) 

We set no = 1 + [(2 Log( 1 + zL:A, 2y- l/2))-’ Log 2 3, where [x] denotes 
the integer part of x. Then, due to (2.57), 

(1 +tL$A:Y-‘/2yo ,< exp( Log 2l/‘( 1 + rL:A :‘-‘/2))<4&‘3, (2.60) 
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where we have used that zL:A, *Y-‘/2 < rA/2 < f. On the other hand 
(K = 4), thanks to (2.59) and the definition of n,, 

Second, we take n E N satisfying no <n < 2n,. Two cases can occur. 

(i) Either, un - v” E %?d and then 

d, (un, M,) d (since Pu” + 4, (Pu”) E M,) 

6 lQu”-A(Pu”)l. 

Hence 

G IQ(u”-v”)I.+ I~,(P~“)-~,V’V”)I. 
< (since U’ - v” E %Fd and 4, E F&,) 

< lu”-v”(./2<(by (2.47)andn62n0) 

< )z4n-Unla(l +zLz,A:y-‘/2y”/2 

<2$l U” - v”lJ3. 

n, < n < 2n,, U” - v” E Q$ * d, (zf, M,) < (2 fi/3) d, (u’, Al,). (2.62) 

(ii) Or, un - v” 4 ‘X4 and then by Proposition 2.2, uk - vk q! %$ for 
k = 0, . . . . no. We can use (2.51), with u: = uk and U: = vk. This leads to 
(lc=4) 

d,(u”,M,)~~u”-v”~~~(1+1/4)(1+5zL,/ly)2”o(l+~/1)-22no~uo-uo~a 

G(W) Iu”-v”lcc (by (2.61)). 

Here, 

no<n<2no u”-vn4~~jd,(~“,M,)~(5/4JZ)d,(ujl.M,). 

We summarize this and (2.62) in 

&(Q, M,) G (2 G/3) d&O, M,) for n,<n<2n,. (2.63) 

Now if n>2n,, we introduce ke N ad r E [no+ 1,2n,] such that 
n = k,, + r. According to (2.64), we have 

&(u”> M,)< (2 ,/%3)k d,(u’, M,), n>,n, 

and this shows the exponential attraction of the inertial manifold with 
0 = CLwW &)lno. I 
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2.2. The General Case 

In this section we consider the general case, i.e., the case where C# 0. 
A lot of schemes are available in order to discretize the evolution equation 
(1.4), and a choice similar to (2.1) would be 

(U “f’-u”)/r+(A+c)u”+‘+F(u”)=O, n 3 0. (2.64) 

This is not in fact a good method since our motivation is the study of 
the behavior of (1.4) on very long time intervals. For example, when F= 0, 
(2.64) will dissipate too much “energy” with respect to the continuous case 
du/dt + (A + C)u = 0. Indeed in this last equation, since C is squew-sym- 
metric, this operator does not contribute to the value of the norms jPu(r)j, 
SE R. While in (2.64) it is the case. On the other hand, if A were not 
present and F= 0, it is well known that leap-frog schemes, like, e.g., 

(u 
n+lmun- 1 )/2T + (A + c)(Untl + d- ')/2T + F(u”) = 0, (2.65) 

are energy preserving. This choice is not good either since in that case it is 
the dissipation of A which is not well approximated (on long time interval). 

In order to represent the dynamics of (1.4) on an arbitrarily large time 
interval, we propose combining the two schemes (2.64) and (2.65) through 
a fractional-step-method: 

24 
n+ I!2 - # 

+ Au” + ID + F(u”) = 0, n. 
L 

U 
II+1 _ Un + Ii2 

+C 
U”+I+U”+l!2=0 

T 2 

(2.66) 

We note that, when C = 0, we recover the classical semi-implicit scheme we 
have used in the previous sections. 

2.2a. A Fractional Step Method. As for the case where C = 0, we rewrite 
(2.66) as 

~~+“~=R(t)(u”-tF(u”), (2.67) 

with R(r)= (Z+zA)-‘. Concerning (2.66),, we use the notations of 
Section 1 and set 

u(T)V = c u, (T) R,, 0, (2.68) 
/lEcT(A) 

where u,(z) is the unitary operator on R,H: U,(T)=(Z+TC,/2).-’ 

(I- zC,/2). The U(T) are unitary on the @A”), SE lR and (2.66), reads 

24 n+l=qT)Un+1/2, (2.69) 
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In conclusion (2.66) can be written as 

where 

u “+‘=R(t)(u”-zF(u”)), n > 0, (2.70) 

R(r) = U(z) R(t) = R(z) U(r), vs>o. (2.71) 

In other words, by comparison with (2.3), we have replaced R(z) by R(z) 
given above. 

2.2b. Existence of an Inertial Manifold. The analogue of Theorem 2.1 is 

THEOREM 2.2. We assume that N > 1 is such that 

A Nf, b 3L;.A:y- ‘12, 

A ,+,-A,~3OL,(A~+AY,+,)r 

then jar every 7 >O such that TA n+, d 1, the discrete infinite dimensional 
dynamical system 

Un+l/2-Un 
+ Au” + 112 +F(zP)=O, 

t 

U”+l 
-24 

n + l/2 

+c” 

n+l +g+I/Z 

2 
= 0, 

z 

possesses an inertial manifold M, which is the graph of a Lipschitz function 
from P,H into Q,D(A’). Moreover there exists two constants C, and ct > 0 
such that for every u” E D(A”), 

d,(u”, M,)bC,e-““d,(u’, M,), VnbO. (2.72) 

The proof of this result is mutatis mutandis that of Theorem 2.1 after 
replacing R(z) by R(z). Indeed the properties of R(z) we have used in Sec- 
tion 2.1 remain true for R(z) since U(z) is unitary and commutes to A. This 
is not surprising since it is also the case in the continuous case [S, Sect. 11, 
where exp At is replaced by exp(A + C)t. 

3. CONVERGENCE OF THE APPROXIMATE INERTIAL MANIFOLDS 

Assuming that N is such that 

‘4 ,v+, > 3L;A:y-‘12, 

A ~+I-A,~:OL,(AY,+A~N+~), 
(3.0) 
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we know according to Theorem 1.1, that the continuous Eq. (1.4) possesses 
an M-dimensional (M= dim PNH) inertial manifold M. For sufftciently 
small T, i.e., VI N+ I Q 1, Theorem 2.2 provides an M-dimensional inertial 
manifold M, for the discretized Eq. (2.66). A natural question is whether 
M, converges to M as r goes to zero. This result is expected since these 
objects are obtained via the Banach fixed point theorem, a robust method. 
However, as we shall see in Section 3.2, the control of the infinite dimen- 
sional parts, i.e., in Q,I-Z, is slightly delicate since we are dealing with 
unbounded operators. 

We denote by 4 the equation of M and by 4, that of M,. The con- 
vergence result is then 

THEOREM 3.1. We assume that N satisfies (3.0) and that zAN+, < 1. 
There exists a constant K which is independent of z > 0 such that 

r= 1, &=l for s,< 1 andy=O 

i=l-Y, E=O for so6 1 andy>O, 

[=(l-y)(2s,-l))‘, &=l for SC)> 1. 

The proof of this result is given in Section 3.3. The two following sections 
are devoted to error estimates for arbitrary do&;. The first one deals with 
the finite dimensional part: we estimate the difference between Sd(nz) and 
(S;) on P,H. The second one concerns the infinite dimensional part: we 
study Y4 - z 4. 

3.1. An Error Estimate on the Finite Dimensional Part 

We are given 4 E 4, and our aim is to relate the two following dynami- 
cal systems: 

$+Ap+Cp+PF(p+d(p))=O, (3.1) 

P “+‘=R(z)(p”-2PF(p”+~(p”))), (3.2) 

where P = PN, r satisfy (2.10), R(z) = R(r) U(z) = (I+ sA)-‘(I+ K/2)--’ 
(I- K/2) and N is a fixed integer. We do not assume that 4 is the graph 
of an inertial manifold. 

Since (3.1) is a standard ODE, we know from classical results on one 
step methods that the discretization error 

e, = p(nT) - P”, nE:Z (3.3) 
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tends to zero with t, like a power of r in general: the order of the method. 
In our case we have the following estimate. 

PROPOSITION 3.1. With the previous hypotheses and notations, let p” be 
given in H and let p(t), t E R (resp. p”, n E Z), denote the solution to (3.1) 
(resp. (3.2)) satisfying p(0) = p” (resp. p,, = p”). For every negative integer n, 
we have 

leAa Q 
T~K( A) 

1 -zL,(l +I) Aa 
(q-n-ep”‘X)(qep’“- l)(l+ Ip”lor), (3.4) 

where K(A) is independent of z and n, q = (1 + tA)( 1 - rL,( 1 + I) Ay)-‘, 
J = A + AyL,( 1 + I), and A= A,. 

Proof: This is a very classical matter, and we only briefly sketch the 
main steps of the proof. We introduce the consistency error, E,, by writing 

R(z)-‘p((n+ l)T)=(p”-zPF(p(m)+d(p(nz)))+E,. (3.5) 

By comparison with (3.2), we have 

R(z)~‘e,+,=(e,-tP(G(p(nr))-G(p”))+&,, (3.6) 

where G(p) = GF(p + 4(p)). The scalar product of (3.6) with e, in D(A”) 
leads then to 

le,l,Gv le n+lla+ I&,l,/(l -T(l -T(l +OLdX). 

This shows that (e,=O) 

(3.7) 

le.I.~(~~~k~n IEA~) (1 -rL,(l +I)))‘, Vn60. (3.8) 

It remains to estimate the sk. We introduce the function q(s) = 
R(s)-‘p(o+s)-p(o)+sPF(p(o)+d(p(o))), where c is fixed and ~30. 
We have 

f& = cp(~)? cr = 122, (3.9) 

and since q(O) = 0, there exists 8 E 10, 1 [ such that 

I-%IaG~ lf-P’(~r)la, g=nt. (3.10) 

We compute q+(s), 

q’(s)= h( )-’ p(o+S)-(L4+C)p((r)+R(s)~1~(a+S)-~(cJ), 
6 ’ > 
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that we rewrite as 

y)‘(s) = $, (s) + $2 (.s). (3.11) 

with $z(s) E R(s) ‘((dpjd.s)(cr + S) - (&/L!.Y)(cT)). The function Ic/, is dif- 
ferentiable and since 11/, (0) = 0, there exists 0, E IO, 1 [ such that 

$,(.s)=SIC/;(H,S). (3.12) 

Concerning **, we write 

= (A + C)(P(~ + s) - p(o)) + f’(G(p(a -ts)) - G(p(a))), 

which shows that 

where we have denoted 

a= JCI Y(D(,4aj, Hj’ (3.13) 

Therefore there exists 8, E 10, 1[ such that (we use that /K(T) ~~ ‘IYIP(D(Azjj d 
1 + SE”) 

I~,(s)l.dsn+sR(3,+a~““+(1+I)L,E.’) ;$(a+tl,s) . (3.14) 
1 

In order to derive from (3.12) and (3.14) an estimate on E, by using 
(3.10), we need an estimate on I p(a)], for negative g. Returning to (3.1) 
and thanks to (1.6)-(1.7), we find (I= i + AyLF(l + I)) 

IP(a d (1 + IPOI,) .-rof VadO. (3.15) 

Then using (3.1) and (3.15), (3.14) leads to 

]$2(s)].<s(l -tsl)K,(l+ IpOla)e-i’++“T), VS,<O, (3.16) 

where Kr (and K, below) are constants which only depend on I, LF, 1, so, 
and a. The estimate of (3.12) is similar. One obtains 

I$1(s)l,<s(21+(1 +s~)aAso)K2(1 + Ip”lz)e-‘s, VSGO. (3.17) 
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We sum (3.16) and (3.17), take u=n7 ~0, s= 7 and regarding (3.10) we 
find 

Is,I.<t*K(A)(l+ \p”la)e-m’, VndO. (3.18) 

Finally, (3.4) follows from (3.8) and (3.18). 

3.2. Convergence of the Mappings Yr to 9 

In this part, we take 4 E 4 and our aim is to show that the Yr~ converge 
to S4 as 7 -+ 0. We prove the following result 

PROPOSITION 3.2. The hypotheses are the same as in Proposition 3.1. We 
assume moreover that N is such that 

A N+i-ANZ2LF(1 +l)Ay,. (3.19) 

For every 7 > 0, such that 7A N+, < 1, andfor every P’EPH, #E@ we have 

I~~~-~~~P”~l.~~o~~+lPOl.~~i~~+l~~~~~,+,I~~~ (3.20) 

where the constant Co depends only on A,, A,,,+ Iso and y but not on 7; [ and 
6 e (0, 1 } are as follows 

i= 1, &=l for y=OandO<s,<l, (3.21) 

i=l-Y, E=O for ~~10, l[ andO<s,dl, (3.22) 

<=(l--y)(2s,-1)-l, &=l for ~~10, l[ ands,k 1. (3.23) 

Proof: Thanks to (1.24) and (2.18), we have 

QG(p(a)) do - 7 f @z)kQG(p+Y, 
k=l 

where, as before, G(p) = F( p + d(p)) an we have considered R(7) instead d 
of R(7) since C may be different from 0. We split this expression as follows 

(cQ- 74)(p”) = Eq. (3.25) + Eq. (3.26) + Eq. (3.27), (3.24) 

e’“fC’“Q(G(p(o))-G(p~k)) da, (3.25) 

(e(a+C)a - R(z)k) QG(p-“) do, (3.26) 

s 

0 

ecA + ‘)“QG( p(a)) da. (3.27) 
--Y 
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We start with 

IA’eA”Q~Iz<(Ay+(2 I~l-‘)~)e”~ IQUI,, t/v E D(A”), vu < 0, (3.28) 

whose proof is parallel to that of (2.31). Then thanks to (1.7), (3.15), and 
(3.28) it is easy to find a constant c, which is independent of T satisfying 
r/i < 1, such that 

IEq. (3.27)l.d &’ ‘( 1 + I#‘/,). (3.29) 

Now the proof is divided in two parts. First we estimate (3.25) using 
Proposition 3.1 and (3.28). Second we majorize (3.26). 

(i) An estimate of (3.25). We write for k > 0, - kr - z 6 o < - kr, 

p(a)-ppk=p(+p(-kz)+p(-kt)-p+ 

and we deduce from (3.1) and (3.15) that there exists @E 10, l[ such that 

/~(u)-p-~l~<~ $(-k~-6~) +/P(-kr)-~~~1% 

IAo)-p-kl.<tK1(l + lp0l.)(ex~4k+ lb)+ IPC-k~I-pd., 
(3.30) 

where here and in the sequel Ki denotes constants which are independent 
of r (satisfying VI < 1). Now using (3.4) with II = -k, we find 

I~(-kz)-p-kI.~~2K2(~k-ekrr)(~e-‘”- l))‘(l + Ip”I,). 

Since (qk-ekX)(qe-‘- l)-’ 6 keAk, we conclude according to (3.30) that 
for k>O 

fP(g)-P--kicr<r(K, +k%Kl + IP”lcx)e’kT, kr< -o<(k+ 1)7. 

(3.31) 

Returning to (3.25), we set v =A-‘(G(p(a))- G(ppk)) and use that 
Iu(, < L,(l + I) /p(a) - pUkla. Then according to (3.28) we deduce, thanks 
to (3.31), that 

I&. w)l, G T&(1 + 1)(1 + k”i,) 

X 
s 

’ (/i+(2lal~‘))(K,+lalK,)exp(n-X)ado. (3.32) 
-cc 

We have by (3.19), .4 - 2 2 LF(l + I)Ay > 0. Since y E [0, l[, the integral 
above is convergent and we can find K3 such that 

lb. (3.25)1, b7K,(l + IPOId (3.33) 
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(ii) An estimate of (3.26). We split this sum as follows 

f j-*’ (e(~+C)~-e~‘~+C)k~)QG(P--k)d,, 

k=l -&r-r 

(3.34) 

T f (eC(A+C)kr-R(T)k) QG(ppk). 
&=I 

(3.35) 

These two terms will be estimated by the same techniques. Let us first state 
two lemmas that we shall use for that purpose, postponing their proofs to 
the end of this section. 

LEMMA 3.1. There exists a constant C, , which is independent of N and 
z satkfying zA < 1, such that 

d C,ri’(l + ILog( (3.36) 

where (, E 10, 1 [, cl E { 0, 1 } are given by the following table : 

y=o O<s,<l 1 1 
y=o sg> 1 l/S, 1 

O<y<l o<s,< 1 1-y 0 

O<y<l so> 1 (l-Y)/% 1 

LEMMA 3.2. There exists a constant C,, which is independent of N and 
z satisfying zA 6 1, such that 

z f IAY(e-‘A+C)ks-R(Z)kl~P(PD(A3L)) eAikT d C,+(l + [Log rjll)‘*, (3.37) 
k=l 

where c2 E 10, l[, .s2 E (0, 1 } are 

12 = 1 -Y, &2 = 0 for s,<l,.sZ=lforY=O, 

12= (1 -YW,- I)-‘, &2= 1 for soal. 

Thanks to these lemmas, we are now able to estimate (3.34) and (3.35). 
Indeed using (1.7), (3.15), and (3.36), we find 

IEq. (3.34)1,<&(1 + Ip”JJri’(l + ILogrnI)“. (3.38) 

409/155/l-14 
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In the same way, this time using (3.37), we have 

1Eq.(3.35)1u<K,(1 +/p”1.)7’L(l+ILog7i11)“‘. (3.39) 

Combining (3.38) and (3.39), we deduce 

IEq. (3.26)1.dK,(l + Ip’)13)si(l + ILogrAI)“, 

i=min(i,, L), E = max(Ei, sZ). 
(3.40) 

Finally (3.20) follows by adding the estimates (3.29), (3.33), and (3.40). 

Proof of Lemma 3.1. The norm of the operators A?, dA + C)a, . . . are easy 
to compute if we take an appropriate Hilbert basis of H. Indeed since A 
and C commute, we know that on each of the finite dimensional space 
R,H, p E a(A), the operator R,C is a squew-symmetric matrix. Using the 
complexillcation of H, it is possible to construct a Hilbert basis of H, 

WP&J’~ such that 

Ae, = I*+,, Ce, = it, ep , PpER*c, 5,ER. 

Moreover, we have the relation (a = I Cl YcDcaaj,HJ) 

ItpI 6 a IP~I~O, V’PE N*. 

Recall now that if B is a diagonal operator in the basis (ep)pEN., then 

I4 pP(D(AZ)) = Sup I(Be,, eJl. 
P>l 

Hence in order to estimate (3.36), we have to study for k>O, 
-IC-z<ab -kT 

~~(~(~+iS)u_,-(,+ie)kr )> (3.41) 

where p 2 /i and 151 <a lp/“O, it being an eigenvalue of C. We write 

Eq. (3.41) = p~(e~u _ epdfr)i50 + p(ei5” _ e-i5kr) ep& 

and majorize separately these two terms. First 

pLy le w-,-~kI <7pl+~e-~kr. 

Second, 

PLY leira - e-W71 = $Y sin 5(a - kz) 2 
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where 6, E [0, l] is arbitrary for the moment. We deduce that 

IEq. (3.41 )I Q (ZP l+Y+21-dlaslrsl~++6,s,)-~‘k’. (3.42) 

When k>k,-(1 +y)(zA))’ and ~2 A, then function p +pl+r-Pkr is 
decreasing, therefore 

P l+ye -flkr</il+y,-Akr, k>(l +y)(td)-I. (3.43) 

For k <k,, that function assumes its maximum at p = (1 + y)(kz) ~ ’ and 
we have 

P l+Ye -“k’<((l +y)(rk)-‘)‘+‘e~(‘+Y), k<(l +~)(zn)-‘. (3.44) 

It follows then from (3.43)-(3.44), that 

f elkr SuprpltYePPk’ 
k=l pan 

when y =O, 
when y >O. 

(3.45) 

Concerning the second term in (3.42), we consider two cases. First, when 
s0 < 1, we take 6, = 1 - y. The analogue of (3.45) reads 

f erk~supr61~Y+S1”oe-~‘k’dK,r-Y (3.46) 
k=l 

with the only exception that if y = 0 and s0 = 1, we must replace the r.h.s. 
of(3.46)byK8(1+ILogrAI).Then,fors,>1, wetaked,<(l-y)/s,.The 
analogue of (3.45) reads this time 

f eXkr Sup r61pY+61so ePPkr < Klorr’+(‘PY)‘So(l + Log Ir/ll). (3.47) 
k=l p>n 

Returning to (3.36), we have to integrate with respect to CJ the estimates 
(3.45), (3.46), and (3.47). Since these are independent of cr, we find 

I1.h.s. of Eq. (3.36)l d r(lEq. (3.45)j + IQ. W6)l for s0 < 1, 

IN (3.47)l for s0 > 1, 

which is (3.36). 1 

Proof of Lemma 3.2. Here we consider 

-(P + i<)kr -(l +rP))k ( :,iTgJ+k). (3.48) 
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where p3A, 151 <a lpjJ” and k> 1. We write 

Q (3.48)=~~(e~‘k”-p~‘““)e~“k’+~l”(e @-(l +7p)--“)e- ,A(‘, 

where 0 = 2 Arctan(r4/2), so that (1 + ir5/2)/( 1 - ir5/2) = exp id. Here 
again we majorize separately the two terms. We have first that 

jkr5 le -e PikH( = 2 Isin(k(8 - r5)/2)/ 

62 ‘-62 lkl”2 l(j-zi”l”2, 

where 8t~ [0, l[ is arbitrary for the moment. Then since for every XE R, 
]Arctan x - XJ <x2/2, we deduce that 

le-‘k’t-,-ik@l ~21~2s2kS272si(512s2, Vd, E [O, 11. (3.49) 

Hence using that 151 Q qP, we obtain 

Ipy(e-“‘5 _ ,+kQ) ,-pkil 

<2 I - 262a262T262 
c1 

(y + 262So,k62 e -pki (3.50) 

The other term in (3.48) is bounded via a first order Taylor formula as 
follows 

IpY(e-~k’ -(l +T~)-~)I dp7+‘r2k(l +r~)-~/2. (3.51) 

For k = 1 and 2 it is in fact better to bound this term as follows 

($(e-Pk-(l +z/L-kl<5V2, k= 1 and2. (3.52) 

A careful study of the function of p which appears in the right hand side 
of (3.51), shows that 

f (Sup (pY(ePNk’-(l +z~)-k)l)eXk<K,,rP1. 
k=3 

(3.53) 

Concerning (3.50), we write 

m 

1 ran 

(Y + 262so) 
e(Jkr) e --(y + 262x0) 

> 

+ c 
,@,fY+&so,(~-~)kr 

k > (y + ~S~S,,)/TA 

(3.54) 
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Concerning S,, we remark that for k > (y + 26,&)/rA the function 
x -+ xa2 e(X-A)xr is decreasing and then 

S*</iYf262so +m 

s 

- xb e(+A)-Xr dx 

0 

=K12/IY+2S2sO((X_/i)Z)--(62+1)~ 

Concerning S, we see that if d2 (I- 2S,) - y > - 1, 

S, =K13Z-(Y+2~2~O) 1 p1--2w-Y 

kc (Y + 262SoPA 

if ?i2(1-2s,)-y= -1 we find that 

S, < Kn- y+26m) Log ItAl. 

Suppose first that so < 1 and choose h2 = 1 - y; we have 6, (1 - 2so) - 
y < 1 and then 

If so 3 1 we choose 6, = ( 1 - y)/(2S, - 1) and find 

s, ~z+‘Mz.so-‘)-’ 

Therefore, returning to (3.48), and using (3.52), (3.53), and (3.54) we find 
for the left hand side of (3.37) 

1.h.s. of (3.37) < K,,z’-Y if so< 1 andyE]O, l[ 

G K,,z(l+ Ilog(~~)l) if so< 1 andy=O 

< K,5+y)‘(2so~1)(1 + Ilog(rA)l) if soa 1. 

3.3. The Proof of Theorem 3.1 

This proof is now straightforward using Proposition 3.2. Indeed, by (3.0) 
and Theorem 1.1, we have 4 = S#, 4 E .&,4. On the other hand for VI < 1, 
we have by Theorem 2.2, 4, = FT b,, #I~ E 91,4. Hence we can write 
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Now, according to (2.21) (x= 7/10 since I= $) 

!IKd - Z4,ll, G (7110) IId - d,lI, 

It follows that 

II~-~,ll.~(10/3) II~~4-%4/1. 
d (by Eq. (3.20)) 

d(loC,/3)r;(l +lLogzAl)” 

which is exactly the desired result. 1 

4. APPLICATIONS 

In this section we develop two types of applications. The first one 
concerns space-inhomogeneous complex amplitude equations (Ginzburg- 
Landau like equations). The second one is related to the Korteweg- 
devries-Burgers equation. In both cases, the linear part is not self-adjoint 
(i.e., C# 0), and this has partly motivated this work. We also note that 
many other applications are possible, in particular reaction-diffusion 
equations, Kuramoto-Sivashinsky equations, Cahn-Hillard equation, . . . 
For these equations we have C=O, i.e., the linear part is self-adjoint, 
existence of inertial manifolds in the continuuous case has been proved in 
[ 11, 9, 20, 21, and 161 depending on the equation considered. Here also, 
our results provide existence and convergence of inertial manifold for 
the time-discretized equation. Finally, we refer to [S] conerning other 
applications. 

4.1. Complex Amplitude Equations 

In this part we consider the following family of equations. 

~-(I+icc)du+(l+iB)foul’)u=ru, (4.1) 

where CI, /I, r are real parameters, u = u(x, t) is a complex valued function 
defined on SZxR,, Sz a bounded open set in W”, d= 1 or 2. Two typical 
cases are f(s) = s and f(s) = +s( 1 + 6s) ~ ‘, 6 > 0. In the former case, (4.1) 
is the well-known Ginzburg-Landau pde which describes the amplitude 
evolution of instability waves in a very large variety of dissipative systems 
in fluid mechanics. In particular systems which are close to criticality, e.g., 
in Taylor-Couette flow, BCnard convection or plane Poiseulle flow . . . . 
In the cases f(s) = +s( 1 + 6s) - ‘, 6 > 0, (4.1) is a Laser equation [6] 
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occurring in the study of propagation of intensive light in a nonlinear 
medium cavity. Other cases can arise, for example, f(s) = --s + s*. 

Various boundary conditions can supplement (4.1): Dirichlet BC 

24(x, t) = 0, xEasz, t>o, (42, 

where iX2 denotes the boundary of 52, or Neumann BC 

g (x, t) = 0, xEaa, tao, (4.~)~ 

where v denotes the outward unit normal on &2, or finally periodic BC: 
Q = 10, Li[$ 

u( ., t) is Q-periodic. (4.21 h 

With regards to the applications above, we shall make on the function 
f~ GP( [w + , W) one of the two hypotheses either: 

3a>O, C1aO, RBO, f>O,f>O such that 

f(s)@“-C,, If’(s)1 <f(s), <fiup’,Vs>R, 
(4.3) 

or 

3030, zlf(lzl12)-Z2f(lZ212)l bw Iz,-z21, vz, E c. (4.4) 

We note that the case f(s)=s and f(s) = --s+s* satisfies (4.3), while 
f(s)= +s(l+&r)’ satisfies (4.4). 

4.la. The Functional Setting. We set H= L2(R)‘, where L2(0) is the 
usual Lebesgue space of order 2 (of real valued function). We also denote 
by H”(Q) the Sobolev space 

H”(Q) = {u E L2(Q), D 31 E L*(Q), t/cl, 1011 Gm}. 

Complex functions u = u1 + iu,, ui E [w, are identified with pairs { u1 , u2} E R* 
and the scalar product on H is then 

(u, w) = Re JQ uW dx = 5, (ul w, + u2w2) dx. (4.5) 

The bounded operator A is defined as 

Au= -Au+u, UED(A), (4.6) 
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(uEH’(Q), v=OondSZ}, or 
D(A)= {uEH’(Q), &/irr=Oon ;isZ}, or 

{u E H2(Q), u and i%/& are O-periodic 1, 

according to the boundary condition (4.2). The operator C is unbounded 
too, 

c = icr(A - I) (4.7) 

it commutes with A, is squew-symmetric and continuous from D(A’ + ’ ) 
into D(A”), VSE R, i.e., we have s0 = 1. With these notations, (4.1) enters in 
the abstract form (1.4) provided we set 

F(u)=(l+r)u+(1+i~)f(lo12)U. (4.8) 

4.lb. Lipschitz Properties of F. It is clear that in the case f(s) = s, we 
cannot expect F to be a globally Lipschitz mapping on some D(A”), ,x E R. 
We shall return to this later, and first consider the case (4.4). Indeed in that 
case. 

and (1.6) and (1.7) hold true with c( = z = 0, L, = (I 1 + r/ + (1 + /12)‘12w). 
Let us now consider the case (4.3). Local in time existence and unique- 

ness of solutions to (4.1)-(4.2) is very classical. Given u0 E H, we denote by 
S(t) u0 = u(t) the maximal solution 

~4 E q([o, TC, L2(QJ2) n %(]O, T[; H’(0)2), T= Tm,, (u,), 

satisfying u(0) = a,,. As we are going to see, a priori estimates on u will 
prove that Tmax(uo)= +co, VU,,E H. In fact S(t) is bounded on H: 

PROPOSITION 4.1. We assume that f satisfies (4.3) with o d 2 when d= 1 
and CJ d 1 when d = 2. There exists p > 0 depending only on the data tl, B, r, 52 
and f such that for every u,, E H, luOl d R there exists t,(R) for which the 
solution to (4.1)-(4.2) with initial data u,, satisfies 

IIUII+/~ (lu(x, t)12+ IWx, t)12) dxGp2, Vt 2 t,,(R). (4.9) 
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This shows that the semigroup s(t) possesses a bounded absorbing set 
B, = {uEH’(Q)~, /Iu(Ii <p}.’ Before giving the sketch of the proof of this 
result, which is postponed to the end of this section we discuss the 
applicability of the abstract framework of Section 1 to (4.1)-(4.2). 

(i) The one dimensional case. In that case since the norm in H’(Q) 
bound the sup-norm, we deduce from Theorem 4.1 that s(t) possesses a 
bounded absorbing set B, in L”“(Q): 3p, >O such that B, = 
{U~L”(Q)Y Sup,,, Iv(x)\ < p, } is absorbing see also Remark 4.1. Since 
we are concerned here with the long time behavior of solutions to 
(4.1t(4.2), we replace F in (4.8) by 

F(u)=(1+r)u+(1+i~)~(~u~*~,*)f(J~~*)u, (4.10) 

where 0 is a cut-off function: 8 E C”( R + ) and 0(s) = 1 for s E [0,2] and 
0(s) = 0 for s > 3. It is clear that after a transient period, a solution of 
(4.1)-(4.2) is a solution to (1.4) with F given in (4.10). This allows us to 
study inertial manifolds for this last equation. And this is relevant as far as 
the long time behavior of the solution to (4.1)-(4.2) is concerned. Now it 
is clear that the “new”f, i.e., B(sp;‘)f(s) satisfies (4.4) and we conclude as 
before that we can take a = y = 0 in (1.6)( 1.7). 

(ii) The two dimensional case. In that case we take instead of (4.8), 

~~~~=~~+~~~+~~+~~~~~Il~lI:~~2~f~I~12~~, (4.11) 

where 8 is as before and p was given in Theorem 4.1. We claim that there 
exists a constant o,, which only depends on r, 8, p, Q, and f such that 

IIF(F(w)ll, <WI Il~--wIl~~ vu, w E H’(Q)*. (4.12) 

Let us note that according to (4.12), we see that (1.6)-( 1.7) hold true with 
cc=+, y=o, L&D,. 

Concerning the proof of (4.12), we note first that the linear part in (4.11) 
is harmless. Hence we have to show that the nonlinear part satisfies (4.12). 
Since this part is compactly supported in H’(Q)2, we only have to check 
that u + 19( llui II *p-‘) f( Iu( 2, is a locally Lipschitz function from H’(R) into 
itself. 

But now this follows by the fact that we are in the case where s2 c [w2 
and H’(Q) is continuously imbedded in L’(O), Vp < co. 

Remark 4.1. In the case where OI= 0, (4.2) is a special kind of reaction 
diffusion system of two equations for which maximum principle is available 

’ A set B, is said to be absorbing for S(r) if for every bounded set B, there exists T(B) s.t. 
S(t) Bc B, for t 2 T(B). 
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(see [7] concerning the case where f’(s) = s and [S] for more general 
cases). In that case, one can show [S] the existence of a bounded 
absorbing set in L”(Q) without any restriction on the space dimension. 
Hence one can replace F in (4.8) by (4.10) and obtain (1.6))(1.7) with 
a=y=o. 

4.1~. Applications of the Results in the One Dimensional Case. In the 
one dimensional case, we set Q = 10, L[, L > 0. The eigenelements of the 
operator A are well known. In the cases (4.1) and (4.2) the eigenvalues 
Ak = .4,, k > 1, are distincts and we have A, = 1 + (k - 1)*n2L’. In the case 
(4.3), we have A, = 1 + 4(k - 1 )‘Z7*L-* with multiplicity mk = 2 except for 
m, which is equal to 1. The condition A,, , 3 3L;-ATY ‘12, reads (here 
Y=O,n,=l) 

N> C,L,L, 

where C, is an absolute constant. The more drastic condition AN+ I - 
/1,>3OL,(AY,+AY,+,), reads 

N 2 Cl L,L*, L> I, (4.13) 

where C, is an absolute constant. This last constraint on N is more 
stringent than the former since the relevant case to consider is L $1. 

The fractional step scheme proposed in Theorem 2.2, reads in case of 
(4.11, 

(U ‘+1~2-~n)/~-du”+‘~2+(1+i~)f(~~“~2)~n=~un, 

(U 
ntl - un + I’*)/7 - ia A ( un + ’ + un + ‘12)/2 = 0, 

(4.14) 

which are supplemented with one of the BC (4.2). Let us first deal with the 
case, where f satisfies (4.4). In that case LF= 11 + rl + (1 + /?2)“2~, and 
summarizing Theorems 1.1, 2.2, and 3.1 we deduce 

THEOREM 4.1. We assume that f satisfies (4.4). Equations (4.1)-(4.2) on 
Q = 10, L[, L > 0 possesses an M-dimensional manifold in L2(Q)2, M = M,, 
where 

M<C2(ll+rl+(1+~2)“20)L2 (4.15) 

and C, is a universal constant. For every t > 0, satisfying zL2( 11 + rl + 
(1 + b2)‘/2~)2 < C,, C, a universal constant, the discrete iteration (4.14) 
possesses also an M-dimensional inertial mantfold in L’(sS)~, M, = M,. 
Moreover we have the error estimate 
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Comments. ( 1) This result provides an inertial manifold for (4.1)-(4.2) 
without changing the nonlinear terms. To our knowledge this is the first 
result of existence of an inertial manifold for the original partial differential 
equation. 

(2) The scheme (4.14) can be actually implemented by using colloca- 
tion-spectral methods. 

(3) On the inertial manifold, (4.14) becomes a finite dimensional 
iteration on R”, which represents the long time behavior of the original 
problem (4.1)-(4.2). 

(4) In the case wheref(s)= -s(l +&)I, and r>,O, (4.1)(4.2),,,. 
possesses solutions which grow exponentially as t --+ + co, for example 
those which are independent of x. Hence (4.1 t(4.2),,, P are not dissipative 
dynamical systems. However, our results apply, and they show in par- 
ticular that these equations have a finite diensional behavior. This is the first 
result in that direction for a nondissipative infinite dimensional dynamical 
system. 

If f satisfies (4.3) we take F given by (4.1 l), i.e., we consider instead 
of (4.1) 

au 
%-(1 +icr)du+(l +iB)e(llull:p~*)f(lu12)u=vu. (4.1)’ 

In that case Theorem 4.1 has an analogue for (4.1)‘-(4.2), provided we 
replace w by wi (see (4.12)); the inertial manifolds are obtained in H’(Q)2 
and the error estimate is now with respect to the norma of that space. Let 
us also mention that the case f(s) = S, i.e., the case of the Ginzburg- 
Landau equation, is addressed in [23]. An inertial manifold for (4.1) is 
constructed in that case. 

4.1.d. The Two Dimensional Case. In that case, as is well known, 
& = (417k/volQ) + o(k), where vol Q denotes the area of 52. This 
asymptotic expansion does not allow us to find arbitrarily large gaps in the 
spectrum of A, in order to satisfy nN+,-/i,~30L,(nY,+nY,+,) (here 
y=O). 

It is clear that the condition AN+, B 3Li/2Ayp ’ is satisfied as soon 
as N is large. Hence in order to show the spectral gap condition 
A ,,, + , - AN > 6OL,, for arbitrary L,, we must have 

limsup(n,+,-A,)= +co. 
N- +m 

(4.16) 

One can answer positively in the case where Q = ]O, L, [x10, L,[ is a 
rectangle and (L1/L2)2 is rational [ 151. Indeed, in that case the eigenvalues 
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of A are known, they read 1 +Z7’(kfL,-‘+ kiL;-‘), where k,, kz are 
integers. A result from number theory (Richards [ 181) then implies (4.25). 
An analogue of Theorem 4.2 then holds. 

4.le. Sketch oj’ the Proof’ qf’ Proposition 4.1. Let us consider a msooth 
solution u to Eqs. (4.1))(4.2). Multiplying by U (resp. -dU) and integrating 
on Q the real part of the resulting identities we find 

;;j -- 
c2 

lu12dx+j 
R 

IVl(l’dx+j f‘(l4’) lul’dx 
R 

=r 
! 

lu12 dx, 
R 

(4.17) 

:ij -- 
R 

IVu12dx+j 
D 

ldul*dx+Re(l+$)j V(f(lul*)u)VUdx 
R 

=r 
s 

IVul 2 dx. (4.18) 
R 

According to (4.3), there exists C, such that f(lul’) >fl~(~“- C,. Now 
there exists C, such that f~‘~+~ - (C, + 1 + r)s* 2 fs*“+‘/2 - C2, and we 

- deduce from (4.13) 

$ j luJ*dx+ I, (u12dx+2 jQ lVu’dx+fjQ Ju12u+2dx<C3. (4.19) 
I 

This implies 

s R lu(x, t)l*dxd 
> 

eP’+C,(l -P-~), Vt 2 0. (4.20) 

Concerning (4.18), we have 

Re(l+$)j (V’(lul*)u)VUdx 
n 

= jDf(lu12) IVu~*dx+Re(l+$)jQf’(lu12)~VtiRe(uVti)dx 

and since f(lul’) > -C,, we conclude with (4.3) that 

;$ j jVul’dx+ !‘,, Idu(*dx 
n 

<(r+C1)~IVu12dx+C4~~u~201Vu12dx. (4.21) 
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We bound the integral f lulzO IVu12 dx by using the Holder inequality 

1 lu120 IVu12 dx6 1 I4 ( 2”+2dxy+l)(j ,v,12~g+“dx)‘~g+‘) (4.22) 

Then due to the following GagliardooNirenberg inequality [ 171 on two 
dimensional domains 

where C, depends only on (T and Sz, we find in (4.18) 

j Iu12u lW2 dxQ c5 J Iul 2”+2dx)~‘(~+lyj lvu12dx)++‘) 

(by the Young inequality) 

1 
3&l 

J Idul’dx+c6(J~ lVU12dX)(j~ lul’“+‘dx)“. 

(4.23) 

Reporting this estimate in (4.17) then leads to 

;I IVu12dx+J ILlu12dx 
R R 

,2(,+,,,.,(j~,.12~+2dx))"~~ Ivu12dx. (4.24) 

We first claim that (4.15), (4.16), and (4.20) prove that local in time 
solutions to (4.1k(4.2) are in fact global. Indeed thanks to (4.16), integrat- 
ing (4.15) between 0 and T shows that 

Iul dxdC,(T)<ax (4.25) 

In the two dimensional case, we have assumed that cr < 1, therefore 
returning to (4.24) and using (4.25) and Gronwall’s Lemma it follows that 
for every T > 0, 

Sup tj IVu(x, t)12dx<C,(T)<co. 
O<f<T Q 

And now global in time existence follows by classical means. So far we 
have not proved a time uniform bound on lu(t)l , It is necessary to make 
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use of a time uniform Gronwall’s Lemma and we refer to [S] concerning 
the details of the proof of (4.9), which indeed follows from (4.19), (4.20 ), 
and (4.21). 

In the one dimensional case, the relevant Gagliardo-Nirenberg 
inequality is 

0 n 
ldul2(~+‘) dr) d c, (jQ ,vu,2 dxy2’ (j* ,A,2 dx)“;‘. 

And this leads, instead of (4.24), to 

In that case CJ < 2 so that 2a/(a + 2) d 1 and we argue as in the previous 
case. 

4.2. Pseudo Korteweg-de Vries-Burgers Equations 

Here we consider the following family of equations 

d,Zd+d~+’ u+KUa,u+(-~yu=~; (4.26) 

where the unknown function u = u(x, t) is real and 2Z7-space periodic 

u(x+2I7, t)=u(x, t), VxxER,Vt30. (4.27) 

The function f and the constant K are given, p is an integer (usually p = 1 
or 2) and (-a:)” is the pseudo differential operator with symbol I/C/~“. 

4.2a. The Functional Setting. The Fourier coefficients of a 2I7-periodic 
function u= II(X) are denoted by uk, kEH, i.e., v(x) = (217)-l” CkEE vk 
exp ikx. Given g d 0, we denote by HT the usual fractional Sobolev space 
of periodic functions: 

H;= vcL2(0,L), c (1+k2)“Iu,J2<oo . 
ksZ 

We denote by H”, = Li = L’(O, L) and by I?: = {v E HT, u0 = 0} the sub- 
space of function in HL with vanishing mean. With regards to the setting 
of Section 1, we take H = x2(0, L) and set 

(AU)k = lkl*%t, (Cu), = (- l)pik2p+‘uk, D(A) = 22:. 



DISCRETIZATION-INERTIAL MANIFOLD 219 

It is clear that C is squew-symmetric and maps continuously D(AS+So) 
into D(A”O), s0 = (2~ + 1)/(2s). Assuming that f~ ei, the function F defined 
by F(v)= rcu a,~-f is locally lipschitzian from HZ into Li. Indeed, 
assuming that DE Hi = .(,1’2S) we write F(u) = a,(tcv2/2) -f, since HZ is 
an algebra, ~~~12 E HZ and then F(v) E Lt. Moreover, since 

F(v) - F(w) = tc8,(v2 - w2)/2 

we have (1 lgla is the norm IA”. 1) 

IF(u)-F(w)l,+v2-w21++wI~= Iv--lo. 

The sup-norm [WI Lm of w is bounded by I I 1,2S which is the HZ-norm, there- 
fore this last estimate shows that F is locally lipschitzian from D(A”) into 
D(A’-?), E= l/23. It is clear that this F is not globally lipschitzian. We are 
going to use here, like in the previous case, the existence of a bounded 
absorbing set and a truncation method. 

4.2b. Time Uniform Estimates. We assume that USE Li and f E Li, it is 
classical that (4.26)-(4.27) possesses a unique solution satisfying 

u E V(R + ; Lt) n L2(0, T; Hi), QT>O, 

and u(0) = u,,. Denoting by S(t) the semigroup Lt 3 u,, -P S(t)u, = u(t), we 
have 

PROPOSITION 4.2. The bounded sets B,, 

where C,(f)= IfIfj+Co(l +E)~IC~ IfI;’ and C, is a numerical constant, are 
positively invariant by S(t): 

S(t)B,c&, Q&>O,Qt>O. 

Moreover for euery E > 0, B, is a bounded absorbing set for S(t) in HZ, i.e., 
for every bounded set B in Hi, there exists T,(B) such that 

S(t)Bc Be, Qt>T,(B),Q,>O. 

Remark 4.2. (i) In general, the B, are not balls in Hi. (ii) This result 
holds true for s 2 1, and T,(B) can be chosen independent of s > 1. 
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ProoJ According to (4.26)-(4.27), we have 

gj ’ j u- d.x + u( - (:f ,” u d,x = 
J -. 

ufdx, 

:d:j(6,U)2dX+j(-:U)(-i:)1U~,~ -- 

=K U(a,u)(a.,,u) dx+ (4’,u)fd.x, 
s 

where the bound of integration, when they are omitted, are x = 0, x = L. It 
follows that 

(4.28) 

Since Iu,IO > IuJO, we deduce from (4.28) 

b(t)l,< I% e-I+ lflo(l -epf). (4.30) 

Then we recall that 

ML = sup I@)l’d 2 Ido /?rIo, VVE HZ, (4.31) 
O<..Z<L 

and estimate thanks to this the cubic term in (4.29). Indeed 

Now since Iu,Ii< 1~1~ Iu,,Io, we conclude by using the Young inequality, 
8ab < 7~7~” + b8 that 

K UU.,U&+ IU,,l:f 
s 

y IuI ‘0, (4.32) 

where Co is a numerical constant (7’2-13). Returning to (4.29) and using 
(4.32) and If ~,,fd~l d Iflo Iu,lo6 lfG+ ld34, luxlo~ Iu~.~I~~ we 
finally find 

f b,l:+ I&If& Ifl;+CoK8 IUllo. (4.33) 
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We are now in a position to show that the B, are positively invariant by 
s(t). We take u0 E B,, E 2 0. According to (4.30), we see that /u(t)1 i < 
(1 +E) Ifli,Vt>O. Then by (4.33), 

Since Iuoxl~<C,(f), we deduce that lu,(t)l~<C,(f), Vt>O and the 
invariance of B, is proved. 

Finally, for E > 0, we consider a bounded set B in Hf , Bc {u E HZ, 
lul;+ lu.&R2}. A ccording to (4.30), for u0 E B we have 

Mt)l, G (1 + 8) IVG for 2 B t,(R) = Log(.s IfI 2R). 

On the other hand, thanks to (4.30) and (4.33), 

i lu,l~+ lu,l~< Ifl~+CoK8(Iuo110e~r+ Ifl~“(l -e-‘I), 

which gives after integration 

(4.34) 

(4.35) 

It is clear that there exists T,(R) B t,(R) such that the right hand side of 
(4.35) is less than C,(f), for t 2 T,(R). This and (4.34) show that 

s,(t) Bc Be, Vt > T,(R) 

and we achieve the proof of Proposition 4.2. 1 

4.2~. Lipschitz Properties of F, We introduce the following cut-off func- 
tion: c(x) = 1 for x E [0,2], i(x) = 3 -x for x E [2.33] and i(x) = 0 for 
x z 3. And set 

F(u)=f-r(lu,l~/2C,(f)) Kuax% (4.36) 

where C,(j) is given in Proposition 4.2. According to this result, solutions 
of (4.27)-(4.28) are solutions of 

du 
;+Au+Cu+F(u)=O. (4.37) 

We claim that Fin (4.36) satisfies (1.6)-(1.7) with CI = y = l/23. We have 
already noted that F maps HZ = D(A ““) into D(A”) = H = Li. We take u 
and wv in fi: and write 

F(u)-F(w)=[(u)oa,u-[(w)wa,w 

409!155/1-I5 
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where C(U) is short hand for K[( Iu,l’)/2C, (,f)). Now 

(we use that Ii(x)-i(r)1 6 i,~-yI) j~(.(-u)-F(~‘)I~</k/ I(u’-~‘~)~l,~j2+ 
IKI (I~,l~- lw.Ji)l MI ~.y~llolW,UI. We claim that 

IF(o)-F(w)l,dC, I4 (lJ‘lo-tK4 Ir’M Iu,--~‘.l”, (4.38) 

where C, is a numerical constant. Indeed, if Iu,I t and Iwrli are both larger 
than 2C, (f) then F(u)= F(w) =0 and (4.38) is obviously satisfied. By 
symmetry we can assume that Iv,/: <2C,(f). Then (4.38) follows 
easily by considering the two cases (i) ju,- w,lib 8C, (j) and (ii) 
l~,-w,l;G3G(f)~ 

4.2d. Construction of Inertial Manifolds. Thanks to (4.38), we see that 
(1.6) holds with LX = y = l/2$. On the other hand the eigenvalues of A: 
A, = Ikl’“, k > 1 have multiplicity two and the conditions on N in 
Theorem 1.1 read 

(N+ 1)2">3C;K2(lf(~+K4 If];)'/& (4.39) 

(N+ l)2”-N2”330CZ IKl (Iflo+K4 lfl;)(N+(N+ I)). (4.40) 

For s = 1, (4.40) is not satisfied in general, but for s > 1 one can always find 
N satisfying (4.39) and (4.40). Since (N+ 1)2S > N2” + 2sN*“- ‘, we deduce 
that there exists a numerical constant C, (independent of S) such that 
(3.39) and (3.40) are satisfied for 

2N>C / 3 '"'(If1 +K4 IfI’) 0 
s 

0 

The fractional step discretization of (4.37) can be explicited here as 
follows. We denote by U; the kth Fourier components of zP and denote by 
u;ou;=c,.,u;-,u; the kth Fourier component of u*. Then the 
fractional step method in Theorem 2.2 reads 

(~~+“~-u~)/y+~k~*~u”+~‘~+ik~~(~u~~~2C,(f))u~~u~=O, 

u~+‘=(1+iz(-l)pk2pf’/2)(1-i~(-l))pk2p+1/2)~1~~f”2, (4.42) 

b:l;= c PI2 WJ2, k E Z. 
PEL 

This scheme was implicit in the physical variables x and t, in the Fourier 
variables (4.42) becomes explicit. 

Applying Theorems 1.1, 2.2, and 3.1 to the pseudo Kortewegde Vries- 
Burgers equations we have the following result. 
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THEOREM 4.2. Equation (4.37) possesses an M-dimensional mantfold in 
I?:, M=M,, where 

For every z>O, satisfying zC:“(ItcI/s)(lflo+tc4 Ifl~))"'+", C, and C, are 
numerical constants; the discrete iteration (4.42) possesses also an M-dimen- 
sional inertial mantfold in I?;, M, = M,. Moreover we have the error 
estimate 

II4 -MI 1,2,dml + ILwd), 

where[=(2s-1)(4p+2-2s)-‘forsE]l,p+$[ and[=(2s-1)/(2s)for 
sap+& 

4.2e. Another Modtfied Equation. According to Proposition 4.2 and the 
estimate (4.3 1 ), the following balls are absorbing for E > 0: 

B,” = {I=$., sup lv(x)14<4(1 +c) Ifl:c,(f)}. 
O<X<L 

This suggests to modify the nonlinear term KUU, -f - ([([VI cp;’ ) kv2/2),. , 
where [ is as in Section 4.2~ and (we consider B;” ) 

~“,=8 Ifl:(l+lG~s IfI:,. 

The function F, is Lipschitz from Lt into HL’ (the dual space of HZ), i.e., 
from H into D(AP”2”). More precisely, (1.6)-(1.7) holds true with c1 =O, 
y = 4s and 

L, G c, 14 (If lo+ Jc2 l.fl3 (4.40)’ 

where C, is a numerical constant. The corresponding modified + - K- dV 
Burgers equation reads now 

du 
z+Au+Cu+F,(u)=O, (4.41)’ 

and solutions of (4.27)-(4.28) are solutions of (4.41) after a transient. 
Then applying Theorems 1.1, 2.2, and 3.1, we obtain the analogue of 
Theorem 4.2. That is exact and approximate inertial manifolds with much 
smaller dimension MO (indeed the relevant cases are when lrc and If lo are 
large), 
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However, these manifolds are imbedded in a larger space, Li instead of H: 
previously. Also, the error estimate holds in that space, i.e., in the norm 
II /IO. Finally we note that one cannot compare the two sets of inertial 
manifolds since they correspond to equations truncated through a different 
procedure. 
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