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1 Introduction

This paper is two folded : On one hand, we prove a comparison result for
singular fully nonlinear operators modeled on the p-Laplacian. In the second
part we use this and a strong maximum principle to obtain Liouville type
results.

The solutions considered are taken in the viscosity sense even though
the standard definitions need to be adapted to our singular operators. As
in the work of Evans and Spruck [?] and the work of Juutinen, Lindquist,
Manfredi [?], we take into account that we cannot take test functions whose
gradient is zero in the test point since the operator may not be defined when
this occurs.

We shall consider an operator F defined on IRN × (IRN)? × S, where
S denotes the space of symmetric matrices on IRN , F is continuous. F is
supposed to satisfy some of the following conditions :

1. F (x, p, 0) = 0,∀ x, p ∈ IRN × (IRN)?.

2. There exists a continuous function ω, ω(0) = 0, such that if (X, Y ) ∈ S2

and ζ satisfy

−ζ
(
I 0
0 I

)
≤
(
X 0
0 Y

)
≤ 4ζ

(
I −I
−I I

)

and I is the identity matrix in IRN , then for all (x, y) ∈ IRN ,

F (x, ζ(x− y), X)− F (y, ζ(x− y),−Y ) ≤ ω(ζ|x− y|2).
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3. ∃α, β ∈ IR2, α ≥ β > −1, (λ,Λ) ∈ (IR+)2, such that ∀(x, p,M,N) ∈
IRN × (IRN)? × S2, N ≥ 0

|p|βλtrN ≤ F (x, p,M +N)− F (x, p,M) ≤ (
|p|α + |p|β

2
)ΛtrN

Let us note that among the functions satisfying all the conditions above
there is the function

F (p,M) = |p|αM+
λ,ΛM

where M+
λ,ΛM = Λ

∑
ei>0 ei +λ

∑
ei<0 ei and e1, ..eN are the eigenvalues of M

(see Caffarelli - Cabrè [?] ). Other examples, including the p-Laplacian, are
given at the beginning of section 2.

Of course condition 3 implies the monotonicity of F i.e. in particular
that ∀(x, p,M,N) ∈ IRN × (IRN)? × S2, N ≥ 0

0 ≤ F (x, p,M +N)− F (x, p,M).

Furthermore if F does not depend explicitly on x, condition 2 is not
necessary.

In his famous work [?] Jensen proved comparison results for viscosity
solutions of

F (u,∇u,∇∇u) = 0

for a class of F everywhere defined. This was a crucial step in the development
of viscosity theory for second order elliptic operators (see e.g. Ishii, Jensen-
Lions-Souganidis, Crandall Lions, etc, [?], [?], [?]).

In the sequel we shall define the concept of viscosity solutions for in-
equations of the form

F (x,∇u,∇∇u)− g(x, u) ≥ 0(≤ 0)

where g is supposed to be continuous on IRN × IR. Moreover in Theorem ??,
we shall establish some comparison principle when g(x, u) = b(u) where b is
a continuous function on IR which is non-decreasing and such that b(0) = 0.

In the first part, our main result is the following
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Theorem 1.1 Let Ω be a bounded open set in IRN . Suppose that F satisfies
conditions 1, 2, and 3 . Suppose that b is some continuous and increasing
function on IR, such that b(0) = 0. Suppose that u ∈ C(Ω) is a viscosity
sub-solution of F = b and v ∈ C(Ω) is a viscosity supersolution of F = b:

If u ≤ v on ∂Ω, then u ≤ v in Ω.

If b is nondecreasing, the same result holds when v is a strict supersolution
or vice versa when u is a strict subsolution.

Let us remark that the super and sub-solutions are taken in the sense given
in Definition ?? below.

This result implies, of course, uniqueness of viscosity solutions for Dirich-
let problems in bounded domains. Furthermore it allows us to prove a strong
maximum principle when b is zero (Proposition 2.2). The case where b is non
zero but satisfies some increasing behavior at infinity is treated in [?].

The proof of Theorem ?? follows the strategy of the proof of comparison
theorems for second order elliptic operators without singularities which dou-
bles the variables and uses a technical Lemma due to Jensen (see Lemma ??
below). Here two difficulties arise, the first is due to the fact that we can’t
use functions with gradient equal to zero at the test points, hence we need
to prove explicitly that this is not the case. Secondly condition 3 requires the
tests functions to be constructed with functions modeled on ψ(x) = b+a|x|q
with q > α+2

α+1
, therefore Jensen’s lemma cannot be used as is, we need to

prove some other ad hoc technical Lemma (see Lemma ?? below).
Let us also remark that our proof doesn’t differentiate the case α > 0

(where the operator is degenerate elliptic) and α < 0 where the operator is
singular.

In the second part we consider the inequation{
−F (x,∇u,D2u) ≥ h(x)uq̄ in IRN

u ≥ 0

where F is a continuous function satisfying conditions 1,3 . Condition 3
will be assumed with α = β; furthermore h is a smooth function such that
h(x) ≥ C|x|γ for |x| large and for some γ that will be specified later.

Let us observe that for α = 0 and λ = Λ = 1 the above equation becomes
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{
−∆u ≥ h(x)uq̄ in IRN

u ≥ 0.
(1.1)

In this case Gidas in [?] and Berestycki, Capuzzo-Dolcetta, Nirenberg [?]
proved, for classical solutions, that when 1 < q̄ ≤ N+γ

N+γ−2
there are no non-

trivial solutions. This result is optimal, in the sense that for any q̄ > N+γ
N+γ−2

it is possible to construct a non trivial positive C2 solution of equation (??)
(see [?]).

The main result in the second part is the following

Theorem 1.2 Suppose that F satisfies condition 1,3. Suppose that u ∈
C(IRN) is a nonnegative viscosity solution of

−F (x,∇u,D2u) ≥ h(x)uq̄ in IRN (1.2)

with h satisfying

h(x) = a|x|γ for |x| large, a > 0 and γ > −(α+ 2). (1.3)

Let µ = Λ
λ
(N − 1)− 1. Suppose that

0 < q̄ ≤ 1 + γ + (α+ 1)(µ+ 1)

µ

then u ≡ 0.

When α = 0, for standard viscosity solutions, this result is due to Cutr̀ı and
Leoni [?].

When F is in a class of divergence form operators (including the p-
Laplacian) this result was obtained by Mitidieri and Pohozaev [?] using in-
tegral estimates that cannot be applied in our case.

The value
1 + γ + (α+ 1)(µ+ 1)

µ
is equal to

N + γ

N + γ − 2
when λ = Λ

and α = β = 0 i.e. the case of the Laplacian.
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2 Comparison principles

Before stating the comparison principle, let us make a few remarks and give
some examples about operators satisfying conditions 1,2 and 3.

Remark 2.1 It is quite standard to see that condition 3 implies that
∀(x, p,M,N) ∈ IRN × (IRN)? × S2,

|p|βλtrN+ − (|p|α + |p|β)
Λ

2
trN− ≤ F (x, p,M +N)− F (x, p,M)

≤ (|p|α + |p|β)
Λ

2
trN+ − |p|βλtrN−

where N = N+−N− is a minimal decomposition of N into the difference of
two nonnegative matrices. This of course implies that for α = β:

|p|αM−
λ,Λ(N) ≤ F (x, p,N) ≤ |p|αM+

λ,Λ(N)

where M−
λ,Λ(N) and M+

λ,Λ(N) are the so called Pucci operators defined by

M−
λ,Λ(N) = λ(

∑
ei>0

ei) + Λ(
∑
ei<0

ei), M+
λ,Λ(N) = λ(

∑
ei<0

ei) + Λ(
∑
ei>0

ei)

where the ei{1≤i≤N} are the eigenvalues of N .

Example 2.1 Evans and Spruck in [?] have considered the evolution of level
sets by mean curvature i.e. they have studied:

ut = (δij −
uxj

uxi

|Du|2
)uxi,xj

in IRN × [0,+∞).
Let us remark that the associated stationary operator:

F (p,N) = trN − (Np, p)

|p|2

satisfies the assumptions 1,3. (See also the work of Chen, Giga and Goto
[?]).

5



Example 2.2 In the case of the q-Laplacian , 3 is satisfied with β = α =
q − 2. Indeed the q-Laplacian is defined by

F (p,N) = |p|q−2trN + (q − 2)|p|q−4(Np, p).

Example 2.3 Let us consider

F (p,N) =

√
|p|8 + 2|p|6 + 3|p|4 + 1

|p| 34
trN + b(Np, p)

with b ≥ 0. Then 3 is satisfied with α = 13
4

and β = −3
4
.

We now present an example where F depends explicitly on x.

Example 2.4 Suppose that q1, q2 are real numbers such that 1 < q1 ≤ 2,
1 < q2 ≤ 2, c(q1, q2) is such that

c(q1, q2)

{
> 0 if q1 6= q2

≥ q1 − 2 if q1 = q2

and suppose that B1 and B2 are two Lipschitz functions which send Ω into
S. Then the function

F (x, p,N) = |p|q1−2tr(B?
1(x)B1(x)N) + c(q1, q2)|p|q2−4(N(B2(x)p,B2(x)p))

satisfies conditions 1,2, 3.

Indeed conditions 1 to 3 are immediate, we shall prove condition 2. In a
first time we check that when B is a matrix with Lipschitz coefficients and
1 < q1 < 2, the operator

|p|q1−2tr(B?(x)B(x)N)

satisfies 2. For that aim let X, Y , such that(
X 0
0 Y

)
≤ ζ

(
I −I
−I I

)
.

Then for ξ, η ∈ IRN we use the inequality

(Xξ, ξ) + (Y η, η) ≤ ζ|ξ − η|2
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with ξ = B(x)ei and η = B(y)ei and ei is some vector of the canonical basis.

(XB(x)ei, B(x)ei) + (Y B(y)ei, B(y)ei)

≤ ζj|(B(x)−B(y))ei|2

≤ ζj|x− y|2(Lip B)2|ei|2.

Summing over i = 1, 2, ..N one gets

F (x, ζj(x− y), X)− F (y, ζj(x− y),−Y ) ≤ c(ζj|xj − yj|)q1−2(ζj|x− y|2)
= (ζj|x− y|2)q1−1|x− y|2−q1)

≤ (diam Ω)2−q1(ζj|x− y|2)q1−1

which goes to zero with ζj|x− y|2, since 1 < q1 < 2.
We now treat the second term

(XB(x)p,B(x)p) + (Y B(y)p,B(y)p) ≤ ζj|B(x)p−B(y)p|2

≤ (LipB)2 ζj|x− y|2|p|2.

Using this with p = ζj(x− y) one obtains

|p|q2−4 ((XB(x)p,B(x)p) + (Y B(y)p,B(y)p)) ≤ ζj|x− y|2(ζj|x− y|)q2−2

= (ζj|x− y|2)q2−1|x− y|2−q2

this goes to zero when (ζj|x− y|2) does, since q2 ∈]1, 2].

Before introducing viscosity solutions in this setting, we want to prove
a weak maximum principle for classical C2 solutions:

Proposition 2.1 Let Ω be a bounded open set in IRN . Suppose that b is some
non decreasing continuous function on IR, such that b(0) = 0. Suppose that
u is C2(Ω) and satisfies

F (x,∇u,D2u)− b(u) ≤ 0 in Ω

where F satisfies 1 and the left hand side of 3, u ≥ 0 on ∂Ω. Then u ≥ 0
inside Ω.
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Proof.
Suppose by contradiction that u has a strictly negative minimum. Let x0 ∈ Ω,

such that u(x0) < 0, and ε <
−u(x0)

diam(Ω)2
. Then the function uε(x) = u(x) −

ε
2
|x − x0|2 also has a strictly negative minimum which is achieved inside Ω.

Indeed if one supposes that it is achieved on the boundary, say at xε ∈ ∂Ω,
then

uε(xε) = u(xε)−
ε

2
|xε − x0|2 ≥

u(x0)

2
> u(x0) = uε(x0)

a contradiction.
At the point xε one has

D2u(xε) ≥ εI

and then, even if Du(xε) = 0, one can find a point x′ε around xε such that
Du(x′ε) 6= 0, and D2u(x′ε) ≥ ε

2
. Using this and the fact that b(u(x′ε)) ≤ 0, the

inequality in 3 becomes

0 ≥ F (x′ε, Du(x
′
ε), D

2u(x′ε))− b(u(x′ε))

≥ λ|Du(x′ε)|βεN
> 0,

which is a contradiction.

In the definition below, g denotes some continuous function defined on
IRN × IR.

Definition 2.1 Let Ω be an open set in IRN , then v ∈ C(Ω) is called a
viscosity super-solution of F = g(x, .) if for all x0 ∈ Ω,

-Either there exists an open ball B(x0, δ), δ > 0 in Ω on which v = cte = c
and g(x, c) ≥ 0

-Or ∀ϕ ∈ C2(Ω), such that v−ϕ has a local minimum on x0 and Dϕ(x0) 6= 0,
one has

F (x0, Dϕ(x0), D
2ϕ(x0)) ≤ g(x0, v(x0)). (2.1)

Of course u is a viscosity sub-solution if for all x0 ∈ Ω,
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-Either there exists a ball B(x0, δ), δ > 0 on which u = cte = c and g(x, c) ≤
0,

-Or ∀ϕ ∈ C2(Ω), such that u−ϕ has a local maximum on x0 and Dϕ(x0) 6= 0,
one has

F (x0, Dϕ(x0), D
2ϕ(x0)) ≥ g(x0, u(x0)). (2.2)

We shall say that v is a strict super-solution (respectively u is a strict sub-
solution) if there exists ε > 0 such that for all x0 ∈ Ω, either there exists
an open ball B(x0, δ), δ > 0 in Ω on which v = cte = c and g(x, c) ≥ ε, or
∀ϕ ∈ C2(Ω), such that v − ϕ has a local minimum on x0 and Dϕ(x0) 6= 0,
one has

F (x0, Dϕ(x0), D
2ϕ(x0)) ≤ g(x0, v(x0))− ε.

(respectively either u = cte on a ball B(x0, δ) and g(x, cte) ≤ −ε, or in (??),
one has F (x0, Dϕ(x0), D

2ϕ(x0)) ≥ g(x0, u(x0)) + ε.)

Remark 2.2 When g ≡ 0 the conditions on locally constant solutions are
automatically satisfied for sub or super solutions.

Theorem 2.1 Let Ω be a bounded open set in IRN . Suppose that F satisfies
condition 1, 2, 3, that b is some increasing continuous function on IR, such
that b(0) = 0. Assume that u ∈ C(Ω) is a viscosity sub-solution of F = b(.)
and v ∈ C(Ω) is a viscosity super-solution of F = b(.), and that u ≤ v on
∂Ω, then u ≤ v in Ω.

If b is nondecreasing the same result holds when v is a strict supersolution
or vice versa when u is a strict subsolution.

For convenience we start by recalling the definition of semi-jets given in
[?] (see also [?], page 140,)

J2,+u(x̄) = {(p,X) ∈ IRN × S, u(x) ≤ u(x̄) + 〈p, x− x̄〉+

+
1

2
〈X(x− x̄), x− x̄)〉+ o(|x− x̄|2)}

and

J2,−u(x̄) = {(p,X) ∈ IRN × S, u(x) ≥ u(x̄) + 〈p, x− x̄〉+

+
1

2
〈X(x− x̄), x− x̄)〉+ o(|x− x̄|2}.
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Clearly when (p,X) ∈ J2,+u(x̄) and p 6= 0 the function φ(x) = u(x̄)+ 〈p, x−
x̄〉+ 1

2
〈X(x− x̄), x− x̄)〉 will be a test function for u at x̄ if u is a subsolution.

Before starting the proof we state the analogous of the famous standard
result (see e.g. Lemma 1 in Ishii [?]) used in comparison theorems for second
order equations:

Lemma 2.1 Let Ω be a bounded open set in IRN . Let u ∈ C(Ω), v ∈ C(Ω),
(xj, yj) ∈ Ω2, xj 6= yj , and q ≥ 3.

We assume that the function

ψj(x, y) = u(x)− v(y)− j

q
|x− y|q

has a local maximum on (xj, yj), with xj 6= yj. Then, there are Xj, Yj ∈ SN

such that
(j(|xj − yj|q−2(xj − yj), Xj) ∈ J2,+u(xj)

(j(|xj − yj|q−2(xj − yj),−Yj) ∈ J2,−v(yj)

and

−4jkj

(
I 0
0 I

)
≤
(
Xj 0
0 Yj

)
≤ 3jkj

(
I −I
−I I

)

where
kj = 2q−3q(q − 1)|xj − yj|q−2.

We postpone the proof of Lemma ??, but let us just remark that since(
I −I
−I I

)
annihilates vectors of type

(
x
x

)
, then Xj ≤ −Yj.

Proof of Theorem ??
Suppose by contradiction that max (u− v) > 0 in Ω. Let us consider for

j ∈ IN and for some q > max(2, α+2
α+1

)

ψj(x, y) = u(x)− v(y)− j

q
|x− y|q.
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Suppose that (xj, yj) is a maximum for ψj. Extracting a subsequence
still denoted (xj, yj), one has (xj, yj) → (x̄, ȳ) for some (x̄, ȳ) ∈ Ω̄2.

Furthermore from

ψj(xj, yj) ≥ ψj(xj, xj),

one obtains that j|xj − yj|q ≤ C, hence x̄ = ȳ ∈ Ω̄.
On the other hand

u(x̄)− v(x̄) ≥ limu(xj)− v(yj)

≥ limψj(xj, yj)

≥ lim sup
x∈Ω

ψj(x, x)

≥ sup
x∈Ω

(u(x)− v(x))

and x̄ is a point where (u − v) achieves its maximum. In the same time we
have obtained that j|xj − yj|q → 0.

Claim: For j large enough xj 6= yj.
We first remark using

ψj(xj, xj) ≥ ψj(xj, x)

and
ψj(xj, xj) ≥ ψj(x, xj)

that xj is a maximum (respectively minimum) point for x 7→ u(x)+ j
q
|x−xj|q

(respectively x 7→ v(x) + j
q
|x− xj|q).

Next, we observe that one can assume that these maximum and mini-
mum are both strict.

Indeed, suppose for example that the minimum is not strict for x 7→
v(x) + j

q
|x− xj|q, then, there exist δ > 0 and R > δ such that B(xj, R) ⊂ Ω

and

v(xj) = inf
δ≤|x−xj |≤R

{v(x) +
j

q
|x− xj|q}.

Hence, if yj is a point on which the minimum above is achieved, one has

v(xj) = v(yj) +
j

q
|xj − yj|q,
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and (xj, yj) is still a maximum point for ψj since

u(xj)− v(yj)−
j

q
|xj − yj|q = u(xj)− v(xj) ≥ u(x)− v(y)− j

q
|x− y|q.

In this case the claim is proved.
We now assume that xj is a strict minimum for x 7→ v(x) + j

q
|x − xj|q

and xj is a strict maximum for x 7→ u(x) + j
q
|x− xj|q.

We define Z+ = {z ∈ IR, b(z) > 0} and Z− = {z ∈ IR, b(z) < 0}.
We shall now prove that
-Either b is increasing, and v(xj) ≥ 0, u(xj) ≤ 0.
-Or b is increasing and
If u is a strict subsolution, u(xj) ∈ Z−, v(xj) ∈ IR\Z−.
If v is a strict supersolution, v(xj) ∈ Z+, u(xj) ∈ IR\Z+.
In particular one can note that when b = 0 this cannot happen and the

claim is proved.
In each of the cases one gets a contradiction with u(xj) > v(xj), since b

is nondecreasing.
To prove this we shall use the following lemma whose proof will be given

later :

Lemma 2.2 Let v be a continuous, viscosity supersolution of

F (x,∇v(x),∇∇v(x))− b(v(x)) ≤ −ε1

with ε1 ≥ 0 for all x in Ω. Suppose that x̄ is some point in Ω such that

v(x) + C|x− x̄|q ≥ v(x̄),

where x̄ is a strict local minimum of the left hand side and v is not locally
constant around x̄. Then,

b(v(x̄)) ≥ ε1.

Remark 2.3 Of course the analogous result is true for subsolutions.

Suppose first that b is increasing :
If v is locally constant, by definition b(v(xj)) ≥ 0, and v(xj) ≥ 0. In the

same manner if u is locally constant u(xj) ≤ 0. We finally assume that nor
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u neither v is locally constant. Then, applying Lemma 2.2 to u and v with
ε1 = 0, C = j

q
and x̄ = xj, one obtains that b(v(xj)) ≥ 0, and b(u(xj)) ≤ 0,

which imply that u(xj) ≤ 0, and v(xj) ≥ 0.
We now consider the case where b is non decreasing, and suppose that v is

a strict super-solution. If v is locally constant around xj one gets b(v(xj)) > 0,
hence v(xj) ∈ Z+. If v is not locally constant, using lemma 2.2 one gets
b(v(xj) > 0. On the other hand if u is locally constant around xj, by defintion
b(u(xj)) ≤ 0, and if u is not locally constant using lemma ?? for u one gets
that b(u(xj)) ≤ 0. Similarly if u is a strict subsolution and v is a supersolution
one obtains that b(u(xj) < 0, b(v(xj) ≥ 0. We have then obtained the desired
result.

We now conclude. Let ε > 0 be given. Suppose first that b is increasing.
Since u(x̄)− v(x̄) = m > 0, one can take j large enough in order that

b(u(xj))− b(v(xj)) ≥
ε

4
and ω(j|xj − yj|q) ≤

ε

4
.

Then using Lemma ??, and property 2 and 3 of F , one gets

0 ≤ F (xj, j|xj − yj|q−2(xj − yj), Xj)− b(u(xj))

≤ F (xj, j|xj − yj|q−2(xj − yj), Xj)− b(v(yj))−
ε

4

≤ F (yj, j|xj − yj|q−2(xj − yj),−Yj)− b(v(yj))−
ε

4
+ ω(j|xj − yj|q)

≤ −ε
2
.

In the case where b is nondecreasing let ε be given such that

F (x,∇v,∇∇v)− b(v(x)) ≤ −ε

then take j large enough in order that

ω(j|xj − yj|q) ≤
ε

2
.

One has, using Lemma 2.1, property 2 and 3 of F and the nondecreasing
behavior of b,

0 ≤ F (xj, j|xj − yj|q−2(xj − yj), Xj)− b(u(xj))
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≤ F (xj, j|xj − yj|q−2(xj − yj), Xj)− b(v(yj))

≤ F (yj, j|xj − yj|q−2(xj − yj),−Yj)− b(v(yj))

+ ω(j|xj − yj|q)

≤ −ε
2
.

In both cases, one gets a contradiction and it ends the proof of Theorem ??.

Proof of Lemma 2.2 :

Without loss of generality we can assume that x̄ = 0. Let mδ be defined
as

mδ = inf
δ≤|x|≤R

{v(x) + C|x|q} > v(0)

and
ε = mδ − v(0).

We choose No large enough in order to have N0 >
1
δ

and N0 >
4q(diamΩ)q−1C

ε

and such that for |x− y| ≤ 1
N0

, one has

|v(x)− v(y)|+ |b(v(x))− b(v(y))| ≤ ε

4
.

Since v is not locally constant and q > 1 for all n there exists (tn, zn) ∈
B(0, 1

n
) with

v(zn) + C|zn − tn|q < v(tn).

We prove that for n ≥ No

inf
|x|≤δ

(v(x) + C|x− tn|q) < inf
δ≤|x|≤R

(v(x) + C|x− tn|q).

Indeed

inf
|x|≤δ

(v(x) + C|x− tn|q) ≤ v(zn) + C|zn − tn|q

< v(tn) (2.3)

≤ v(0) +
ε

4
.
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On the other hand, for n > No:

inf
R≥|x|≥δ

(v(x) + C|x− tn|q) ≥ inf
x

(v(x) + C|x|q + C|x− tn|q − C|x|q)

≥ ε+ v(0)− qC|tn| (diamΩ)q−1

≥ v(0) +
3ε

4
.

Finally the minimum is achieved in B(0, δ).
Moreover, using (??), the point on which the minimum is achieved is

not tn, hence the function

ϕn(x) = −C|x− tn|q

is a test function for v on a point zn
δ . Using the property 3 of F , one obtains

that for some constant C ′

|F (zn
δ ,∇ϕn(zn

δ ),∇∇ϕn(zn
δ ))| ≤ C ′|δ|q(α+1)−(α+2).

Consequently, since q > α+2
α+1

, we can choose δ such that C ′δq(α+1)−(α+2) ≤
ε
4

and then

b(v(0)) ≥ b(v(zn
δ ))− ε

8

≥ b(v(zn
δ ))− F (zn

δ ,∇ϕn(zn
δ ),∇∇ϕn(zn

δ ))− ε

4

≥ ε1 −
ε

4

This ends the proof, since ε is arbitrary.

Proof of Lemma ??.
The proof is a consequence of two technical facts and a lemma which is

the analogous of Lemma 9 in Ishii [?].
Claim 1 Let Aj be defined as

Aj = j

(
Dj −Dj

−Dj Dj

)
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where Dj = 2q−3qCj and Cj = |xj − yj|q−2(I + (q − 2)(xj − yj)⊗ (xj − yj)).
Then

Aj +
1

j
A2

j ≤ 2j||Dj||
(

I −I
−I I

)
.

Claim 2
Suppose that q > 2. Then

1

q
|ξ + η|q − 1

q
− < ξ, η > −2q−3q(|η|2 + (q − 2) < ξ, η >2) ≤ 0 (2.4)

for any ξ 6= 0, ξ ∈ IRN , |ξ| = 1 and η ∈ IRN such that

|ξ| ≥ |η|.

Lemma 2.3 Let (u, v) ∈ USC(IRN) and A ∈ S2N , and assume that u(0) =
v(0) = 0 and

u(x) + v(y) ≤ (x, y)A

(
x
y

)

for all x, y ∈ IRN then for all ε > 0 there are (X, Y ) ∈ SN such that

(0, X) ∈ J2,+(u(0)), (0, Y ) ∈ J2,−(v(0))

and

−(
1

ε
+ ||A||)

(
I 0
0 I

)
≤
(
X 0
0 Y

)
≤ A+ εA2.

The proof of this lemma can be found in Ishii [?], while the proofs of the
claims are given below.

We are now able to prove Lemma ??. We use the arguments in Ishii [?].

Let j be large enough in order to have |xj − yj| <
1

j|xj − yj|q−1 + 1
. For ε

small enough, ε ≤ |xj−yj |
2

, define uj and vj ∈ USC(IRN)

uj(x) =

∣∣∣∣∣∣∣
u(x+ xj)− u(xj)− j|xj − yj|q−2 < xj − yj, x >, |x| ≤ ε

−|x|2

ε3
− 2||u||∞, |x| > ε

16



vj(y) =

∣∣∣∣∣∣∣
−v(y + yj) + v(yj) + j|xj − yj|q−2 < xj − yj, y >, |y| ≤ ε

−|y|2

ε3
− 2||v||∞, |y| > ε

We need to prove that these functions are USC. Starting with u one must
check that for |x| = ε

−|x|2

ε3
− 2||u||∞ ≤ u(x+ xj)− u(x)− j|xj − yj|q−2 < xj − yj, x > .

This is satisfied since ε < |xj − yj| implies

ε2 ≤ |xj − yj|2 ≤
1

j|xj − yj|q−2 + 1
≤ 1

j|xj − yj|q−1 + 1
.

For v we must check that for |y| = ε :

−2||v||∞ − |y|2

ε3
≤ −v(y + yj) + v(yj) + j|xj − yj|q−2 < xj − yj, y >,

which is satisfied since

ε2 ≤ 1

j|xj − yj|q−1 + 1
.

In order to apply Lemma 2.3. we need to prove that for Aj as defined in
claim 1,

uj(x) + vj(y) ≤ (x, y)Aj

(
x
y

)
.

For that aim we distinguish several cases :
First case. Suppose that |x| ≤ ε and |y| ≤ ε. Then |x − y| ≤ 2ε ≤

|xj − yj|.
We prove then that for |x− y| ≤ |xj − yj|

uj(x) + vj(y) ≤ (x, y)Aj

(
x
y

)
.

Indeed one has

(x, y)Aj

(
x
y

)
= j2q−3q|xj − yj|q−4

(
|xj − yj|2|x− y|2 + (q − 2) < xj − yj, x− y >2

)

17



and, on the other hand

uj(x) + vj(y) = u(x+ xj)− u(xj)− v(y + yj) + v(yj)

− j|xj − yj|q−2 < xj − yj, x > +j|xj − yj|q−2 < xj − yj, y > .

Adding and subtracting j
q
|x+ xj − y − yj|q − j

q
|xj − yj|q, one gets

uj(x) + vj(y) = ψj(x+ xj, y + yj)− ψj(xj, yj) +
j

q
|x+ xj − y − yj|q

− j

q
|xj − yj|q − j|xj − yj|q−2 < xj − yj, x− y > .

Hence

uj(x) + vj(y)− (x, y)A

(
x
y

)

= ψj(x+ xj, y + yj)− ψj(xj, yj) +
j

q
|x+ xj − y − yj|q −

j

q
|xj − yj|q

− j|xj − yj|q−2 < xj − yj, x− y >

− j2q−3q
(
|xj − yj|q−4(|xj − yj|2|x− y|2 + (q − 2) < xj − yj, x− y >2)

)
.

Since by the definition of (xj, yj) one has

ψj(x+ xj, y + yj)− ψj(xj, yj) ≤ 0

it is sufficient to prove that

0 ≥ j

q
|x+ xj − y − yj|q −

j

q
|xj − yj|q − j|xj − yj|q−2 < xj − yj, x− y > +

−j2q−3q
(
|xj − yj|q−4(|xj − yj|2|x− y|2 + (q − 2) < xj − yj, x− y >2)

)
This can be obtained using the convexity inequality in claim 2, with ξ =
xj − yj

|xj − yj|
and η =

x− y

|xj − yj|
.

Second case : Suppose that |x| ≤ ε and |y| ≥ ε.

18



One may write, using the first case for |x| ≤ ε and y = 0

−|y|2

ε3
+ uj(x) ≤ (x, 0)Aj

(
x
0

)
− |y|2

ε3

= (x, y)Aj

(
x
y

)
− (0, y)Aj

(
0
y

)
+

− (x, 0)Aj

(
0
y

)
− (0, y)Aj

(
x
0

)
− |y|2

ε3

≤ (x, y)Aj

(
x
y

)
+ ||Aj||(|y|2 + 2|y| |x|)− |y|2

ε3

≤ (x, y)Aj

(
x
y

)
+
(
kj −

1

ε3

)
||y||2

≤ (x, y)Aj

(
x
y

)

by the choice of ε. The case where |x| > ε and |y| ≤ ε is analogous.
Third case Suppose that |x|, |y| ≥ ε. Then

−|y|2

ε3
− |x|2

ε3
≤ −2(||Aj||)(|x|2 + |y|2) ≤ (x, y)Aj

(
x
y

)
.

We now apply Lemma ?? to uj, vj with ε = 1
j
. Hence (0, Xj) ∈ J2,+ũj(0),

(0,−Yj) ∈ J2,−ṽj(0) and(
Xj 0
0 Yj

)
≤ Aj +

1

j
A2

j ≤ 2jkj

(
I −I
−I I

)
,

in the second inequality we have used claim 1. Noting that
J2,+uj(0) = [J2,+u(xj)]− (j|xj − yj|q−2(xj − yj), 0), we see that

(j|xj − yj|q−2(xj − yj), Xj) ∈ J2,+u(xj).

Similarly
(j|xj − yj|q−2(xj − yj),−Yj) ∈ J2,−v(yj).

This ends the proof of Lemma ??.
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Proof of claim 1
Computing Aj one gets

Aj = j

(
Dj + 2D2

j −Dj − 2D2
j

−Dj − 2D2
j Dj + 2D2

j

)

and Dj + 2D2
j is a symmetric matrix which has a norm less than ||Dj||(1 +

2q−2q(q − 1)|xj − yj|q−2) ≤ ||Dj||(1 + j−1+ 2
q ) ≤ 2||Dj|| for j large enough.

Claim 1 is a direct consequence of

Lemma 2.4 For all symmetric matrix A , one has

−3||A||
(
I 0
0 I

)
≤
(

A −A
−A A

)
≤ ||A||

(
I −I
−I I

)

where ||A|| is the norm subordinate to the Euclidean norm i.e. ||A|| = supx,|x|=1 |Ax|
and |x|2 =

∑
i x

2
i .

Proof of lemma ?? One must prove that for all (X,Y ) ∈ IR2N

t(X, Y )

(
||A||

(
I −I
−I I

)
−
(

A −A
−A A

))
(X, Y ) ≥ 0

One has

t(X, Y )

(
A −A
−A A

)
(X, Y ) = tX(AX − AY ) +t Y (−AX + AY )

= tXAX −t XAY −t Y AX +t Y AY

= t(X − Y )A(X − Y )

≤ ||A||t(X − Y )(X − Y )

= t(X, Y )||A||
(

I −I
−I I

)
(X, Y )

Proof of Claim 2
To prove (??), let us define on [0, 1] the function f :

f(t) =
1

q
|ξ + tη|q − 1

q
− t < ξ, η > −t22q−3q(|η|2 + (q − 2) < ξ, η >2).
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One observes that f(0) = 0,

f ′(t) = |ξ+ tη|q−2 < ξ+ tη, η > − < ξ, η > −q2q−2t(|η|2 + (q− 2) < ξ, η >2).

One has f ′(0) = 0 and

f ′′(t) = (q − 2)|ξ + tη|q−4 < ξ + tη, η >2

+ |ξ + tη|q−2|η|2 − 2q−2q(|η|2 + (q − 2) < ξ, η >2) ≤ 0.

Indeed,

(q − 2)|ξ + tη|q−4 < ξ + tη, η >2 +|ξ + tη|q−2|η|2

= |ξ + tη|q−4(< ξ, η >2 (q − 2) + t2|η|4(q − 2) + 2(q − 2)t < ξ, η > |η|2

+ |η|2 + t2|η|4 + 2t < ξ, η > |η|2)
= |ξ + tη|q−4

(
(q − 2) < ξ, η >2 +|η|2((q − 1)(t2|η|2 + 2t < ξ, η >) + 1)

)
≤ 2q−4(< ξ, η >2 (q − 2) + |η|2(3q − 2))

≤ 2q−2q(< ξ, η >2 (q − 2) + |η|2).

Finally f ′ is negative on [0, 1] and f as well. This proves (??).

We now state and prove a strong maximum principle when there is no
explicit dependence on u in the equation.

Proposition 2.2 Let Ω be a bounded open set in IRN . Suppose that F sat-
isfies 1 and 3 with α = β. Let u in C(Ω), u ≥ 0 in Ω be a super-solution
of F (x,∇u,∇∇u) = 0. Then, either u is strictly positive inside Ω, or u is
identically zero.

Proof.
Using the inequality satisfied by F in its definition, let us recall, using

Remark ??, that

F (x, p,M) ≥ |p|α(λtr(M)+ − Λtr(M)−)

:= G(p,M)
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hence it is sufficient to prove the proposition when u is a super-solution of
G = 0. G does not depend on x and it satisfies the hypothesis of Theorem
??.

Let us suppose that x0 is some point inside Ω on which u(x0) = 0.
Following e.g. Vasquez [?], one can assume that on the ball |x − x1| = |x −
x0| = R, x0 is the only point on which u is zero and that B(x1,

3R
2

) ⊂ Ω. Let
u1 = inf

|x−x1|=R
2

u > 0, by the continuity of u. Let us construct a sub-solution

on the annulus R
2
≤ |x− x1| = ρ < 3R

2
.

Let us recall that if φ(ρ) = e−cρ, the eigenvalues of D2φ are φ′′(ρ) of

multiplicity 1 and
φ′

ρ
of multiplicity N-1.

Then take c such that

c >
2(N − 1)Λ

Rλ
.

If c is as above, let a be chosen such that

a(e−cR/2 − e−cR) = u1

and define v(x) = a(e−cρ − e−cR). The function v is a strict sub-solution of
G = 0. Furthermore 

v ≤ u on |x− x1| =
R

2

v ≤ 0 ≤ u on |x− x1| =
3R

2
,

hence u ≥ v everywhere on the boundary of the annulus. Using the
comparison principle Theorem ?? for the operator G, u ≥ v everywhere on
the annulus, and then v is a test function for u on the test point x0. One
must then have since u is a super-solution and Dv(x0) 6= 0,

−G(Dv(x0), D
2v(x0)) ≥ 0

which clearly contradicts the definition of v. Finally u cannot be zero inside
Ω.
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Remark 2.4 A Hopf’s property
Using the same construction and assuming that x0 ∈ ∂Ω, replacing the

previous annulus by its ”half part ” R
2
≤ |x− x1| ≤ R and using the compar-

ison principle, since v = 0 on |x − x1| = R, Dv 6= 0 in Ω and v ≤ u on the
other boundary of the annulus, one gets that

u(x) ≥ a(e−cρ − e−cR)

and then taking x = x0 − h~n and letting h > 0 go to zero, one gets

u(x)− u(x0)

h
≥ a

e−cR+ch − e−cR

h
→ ace−cR

This, for example, implies that Du(x0) 6= 0 when u is C1.

3 Liouville’s Theorem

As mentioned in the introduction we consider now F (x, p,X) continuous and
satisfying conditions 1,3 for any x ∈ IRn. In all the section we will suppose
that α = β in condition 3. Finally we will denote by µ the real number

µ =
Λ

λ
(N − 1)− 1.

Using the comparison’s Theorem ?? and the strong maximum principle in
Proposition ?? obtained in the previous section we want to prove the follow-
ing

Theorem 3.1 Suppose that u ∈ C(IRN) is a nonnegative viscosity solution
of

−F (x,∇u,D2u) ≥ h(x)uq̄ in IRN (3.1)

with h satisfying

h(x) = a|x|γ for |x| large, a > 0 and γ > −(α+ 2). (3.2)

Suppose that

0 < q̄ ≤ 1 + γ + (α+ 1)(µ+ 1)

µ

then u ≡ 0.
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Now recalling Remark ??, condition 3 with α = β implies that if u is a
solution of (??) then it is also a solution of

−M−
λ,Λ(D2u)|∇u|α ≥ h(x)uq̄

Therefore in the proof of Theorem ?? we shall consider this inequation,
using the same notation F for its left hand side. Before giving the proof
of Theorem ?? Let us define m(r) = infx∈Br u(x). Let us note that if u
is not identically zero and satisfies (??), the strict maximum principle in
Proposition ?? implies that m(r) > 0.

We now prove the following Hadamard type inequality

Proposition 3.1 Let u be a viscosity solution of −F (x,∇u,D2u) ≥ 0 and
u ≥ 0, which is not identically zero. For any 0 < R1 < r < R2 :

m(r) ≥ m(R1)(r
−µ −R−µ

2 ) +m(R2)(R
−µ
1 − r−µ)

R−µ
1 −R−µ

2

. (3.3)

Proof. This is immediate using the comparison principle Theorem ??
with b = 0 in BR2 \ BR1 between the function u and the function φ defined
by φ(x) = g(|x|) with g(r) = C1r

−µ + C2 where C1 and C2 are chosen such
that φ(x) = m(R1) on ∂BR1 and φ(x) = m(R2) on ∂BR1 . Using Remark 2.1,
we can apply the comparison principle Theorem ?? in Br2 \ Br1 between u
and φ. And this gives precisely (??).

Corollary 3.1 Suppose that u satisfies the assumptions in Proposition ??.
Then, for r ≥ R1:

m(r) ≥ m(R1)r
−µ

r−µ
1

.

Just observe that since µ > 0, by letting R2 tend to infinity in (??) we obtain
the above inequality.

Corollary 3.2 We still assume that u satisfies the assumptions in Proposi-
tion ?? Suppose that 1 ≤ r ≤ r1 and r1 ≥ 2. Then

m(r)−m(r1) ≥ (m(1)−m(2))(r−µ − r−µ
1 ). (3.4)

As a consequence for 0 ≤ θ ≤ 1
2

m(r1(1− θ))−m(r1) > (m(1)−m(2))r−µ
1 θµ.
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Proof
We use the inequality

m(r)−m(R2) ≥
m(R1)−m(R2)

R−µ
1 −R−µ

2

(r−µ −R−µ
2 )

which is equivalent to (??) in Proposition ?? with R1 = 1, and R2 = r1 ≥ 2
and m(R2) = m(r1) ≤ m(2) to obtain (??).

We then use the mean value theorem and the fact that (1−θ′)−(µ+1) > 1
when 1 > θ′ > 0.

Proof of Theorem ??.
We suppose by contradiction that u 6≡ 0 in IRN , but since u ≥ 0 and u is

a super-solution in the viscosity sense, using Proposition ?? one has u > 0.
We denote by C the constant

C =
m(1)−m(2)

(1− 2−µ)

µ

m(r1)r
µ
1

.

Let 1 < r1 ≤ R
2
, define g(r) = m(r1)

{
1− C(r−r1)

(R−r1)
− [(r−r1)+]3

(R−r1)3

}
. Let

ζ(x) = g(|x|). Clearly for |x| ≥ R, ζ(x) ≤ 0 < u(x). On the other hand
there exists x̃ such that |x̃| = r1 and u(x̃) = ζ(x̃).

Let us observe that the definition of C implies that u − ζ has a local
minimum on [r1, R]. For this, one proves that for θ ≤ 1

2
, for x such that

r1 ≥ |x| ≥ r1

2
, u(x) > ζ(x). Indeed, for such x, |x| = r1(1− θ)

ζ(x) = g(r1(1− θ))

= m(r1) +
m(1)−m(2)

(1− 2−µ)
r−µ
1

r1θµ

(R− r1)

≤ m(r1) +
m(1)−m(2)

(1− 2−µ)
r−µ
1 θµ

< m(r1(1− θ))

≤ u(x).

Hence a local minimum of u(x)−ζ(x) occurs for some x̄ such that |x̄| = r̄
with r1 ≤ r̄ < R.
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Let |x| = r, it is an easy computation to see that for r ≥ r1

g′(r) = −m(r1)

(
C

R− r1
+ 3

(r − r1)
2

(R− r1)3

)

and

g′′(r) = −m(r1)

(
6(r − r1)

(R− r1)3

)
and then

−F (x,∇ζ,D2ζ(x)) ≤ −λ|∇ζ|α(∆ζ)

≤ −λ|∇ζ|α
(
g′′(r) +

(
N − 1

r

)
g′(r)

)
≤ λm(r1)

α+1

∣∣∣∣∣ C + 3

(R− r1)

∣∣∣∣∣
α (

6

(R− r1)2
+
(
N − 1

r

)
C + 3

(R− r1)

)

≤ m(r1)
α+1 C ′

(R− r1)α+2
(3.5)

using r ≥ r1 ≥ R− r1 and for some universal constant C ′. Since ∇ζ(x̄) 6= 0,
using the definition of viscosity solution

h(x̄)uq(x̄) ≤ −F (x̄,∇ζ(x̄), D2ζ(x̄)).

We choose r1 and R sufficiently large in order that h(x) ≥ a|x|γ for |x| ≥ R
2
.

Combining this with (??), we obtain

ar̄γm(r̄)q̄ ≤ ar̄γuq̄(x̄) ≤ C ′m(r1)
α+1(R− r1)

−(α+2).

Since m is decreasing the previous inequality becomes

m(R) ≤ C ′′m(r1)
α+1

q̄ r̄
−γ
q̄ (R− r1)

−α+2
q̄ .

Now we choose r1 = R
2
, we use Corollary ?? and finally we get

m(R) ≤ Cm(R)
(α+1)

q̄ R
−(α+2+γ)

q̄ . (3.6)
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First we will suppose that q̄ ≤ α+1; hence, using the monotonicity of m(R),
the above inequality becomes

R
α+2+γ

q̄ ≤ C ′′m(R)
(α+1)

q̄
−1 ≤ C ′′u(0)

(α+1)
q̄

−1.

Since we are supposing that α + 2 + γ ≥ 0, we get a contradiction. This
concludes this case.

Now suppose that q̄ > α+ 1, this implies that (??) becomes

m(R)Rµ ≤ C ′′Rµ− (α+2+γ)
q̄−(α+1) . (3.7)

If q̄ < 1+γ+(α+1)(µ+1)
µ

then µ− (α+2+γ)
q̄−(α+1)

< 0. We have reached a contradiction

since the right hand side of (??) tends to zero for R → +∞ while the left
hand side is an increasing positive function as seen in Corollary ??.

This concludes the proof of this case.

We now treat the case q̄ = 1+γ+(α+1)(µ+1)
µ

. Let us remark that for this
choice of q̄ we have that for some C1 > 0, c > 0 and r > r1 > 0, with r1 large
enough :

−F (x,∇u,D2u) ≥ arγuq̄ ≥ C1r
−(µ+1)(α+1)−1. (3.8)

We choose ψ(x) = g(|x|) with

g(r) = γ1r
−µ logν r + γ2

where γ1 and γ2 are two positive constants such that for some r1 > 1 and
some r2 > r1:

m(r2) = g(r2),

m(r1) ≥ g(r1),

while ν is a positive constant to be chosen later. It is easy to see that

|∇ψ|αM−
λ,Λ(D2ψ)

= | − µ+
ν

log r
|α|γ1|α+1r−(µ+1)α logνα r

[
r−(µ+2) logν rµ(λ(µ+ 1)− (N − 1)Λ)

−λµνrr−(µ+2) logν−1 +λν(ν − 1)r−(µ+2) logν−2 r
]

≤ −Cr−(µ+1)(α+1)−1(log r)να+ν−1.
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We have used the fact that λ(µ+ 1)− (N − 1)Λ = 0.
We can choose ν > 0 such that να + ν − 1 < 0. Using ?? this allows us

to get

−F (x,∇u,D2u) ≥ Cr−(µ+1)(α+1)−1

≥ Cr−(µ+1)(α+1)−1(log r)να+ν−1 ≥ −|∇ψ|αM−
λ,Λ(D2ψ).

Since u ≥ ψ on the boundary of Br2 \ Br1 , one obtains by the comparison
principle that u ≥ ψ everywhere in Br2 \Br1 .

When r2 goes to infinity it is easy to see that γ2 → 0, and we obtain

u(x) ≥ c|x|−µ logν |x|,

for |x| ≥ r1. This implies that

m(r) ≥ cr−µ logν r

for r > r1. We have reached a contradiction since

m(r) ≤ Cr−µ.

Hence u ≡ 0. This concludes the proof of Theorem ??.
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