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Introduction

This article presents certain results on variational problems that arise in differ-
ent areas of mechanics and, especially, in plasticity. The common mathematical
feature of these problems is that they involve energies that are coercive on non-
reflexive spaces of the type L', so the solutions, when they exist, lie in generalized
spaces such as

BV(Q) = {uc L), Vue M'(2,R")},
BD(Q) = {uc L(Q), g(u) = ¥ (u; + u,)) € MM, E)},
or
HB(Q) = {u€ L'(Q), u; = (VVu);€ M'(2, R)},

where £2 is a bounded open set in RY, E is the space of symmetric tensors of order
two on RY, and M'(£2, X) denotes the space of bounded measures on £ with
values in Y. The use of these spaces settles in a satisfactory way the problem of
existence of solutions in the sense of the calculus of variations. However, it leaves
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open questions that are important in the applications to mechanics. To fix ideas,
let us consider the problem of limit analysis for antiplane shear in plasticity, name-

ly
Lu=  inf :gfIVu]—l—F{luﬁ[}

ueBV(Q)
J’fu+ J‘ Fu=1
Q I

where f€ LM(Q) is the body force and Fe L®(I";) is the traction on the bound-
ary. The methods of the calculus of variations guarantee that a minimizing se-
quence contains a subsequence (u,) which converges, weakly in BV(£), to a mini-
mizer u€ BV(£2). However, this does not allow us to conclude that u satisfies
the work condition Lu = 1 since we do not know, for instance, that u, .— ulr
in any sense.

Questions of this type have motivated the first part of this article which seeks
to establish sufficient conditions for compactness of the known injections BV(£2)
— LNN=I(Q), BD < LYV1(Q), yo(BV) = L(I), yo(BD) = LY(I"), HB - C(Q).

These injections, which are of course continuous in the strong topologies
may be continuous in other, intermediate, topologies which are induced by con-
vex functions of a measure defined by R. TémaM and the author in [8]. To be pre-
cise, when ¥ is a convex lower semi-continuous proper and non-negative function
which is linear at infinity, we may define on X, = {uc L'(Q), Suc M'(Q)} the
distance

nlp

dy o, 0) = [u — o] + | [9(Su) — p(Sv)]

where S is one of the operators V, ¢ or VV and y(Su) is the bounded measure
defined in [8]. The central result in Part I is that if (,) is a sequence converging
to u in the metric d,,; then, if S =V ore, u,tendstouin LYV ~'(),and u, . tends
to wp in L'(I'); if §=VV, u, is pointwise convergent to u.

These results are of general mathematical interest, independent of the intended
applications, and so Part I of the paper may be read independently of the rest.

The second part of the paper deals with applications of the above results.
In the first place we obtain a solution of the problem of relaxed limit analysis in
plasticity, under weak assumptions. Furthermore, we provide improvements to
the existence theory in plasticity, by KouN & TtiMAM [12]. In particular, we show
that the minimizing sequence (u,) for the energy actually converges in LV*, thus
answering a question raised by STRANG & TEmaM [21]. Moreover, we show that
the trace of (#,) on the part I'; of the boundary on which traction is prescribed
tends, in L', to the trace of the limit. This solves a problem posed by SUQUET in
his thesis [19] and it also provides a possible explanation to the observation that
the displacement gradient does not jump across the interface formed by the clamped
and the free part of the boundary of the body.

Part I. Compactness in BV, BD and HB Spaces

As I mentioned in the general introduction, my aim in this chapter is to de-
scribe a family of convenient topologies on the spaces BV, BD, HB, which make
the following injections BD, BV — LNN=1(0), »,(BV, BD) <> LY(I"), HB < €(2)
continuous.
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1.1, Survey of known properties and notations

Let Y be a real Euclidean finite dimensional space, £ be an open bounded set
of R¥, N = 2, with boundary I'. Suppose that v is a convex lower semi-continuous

proper function from Y into R such that

p0)=0,9=0 1.1
which is linear at infinity, i.e. there are positive constants ¢,, ¢, with
(Co [§] = D =9@® = ,((E] + 1) (1.2)

for all & in Y. It is shown in [8] that (1.2) is equivalent to
K = dom y* is bounded and contains 0 in its interior (1.3)
where p* denotes the conjugate of ¥,
P*E) = sup{E - — )}

(see for instance J.J. MOREAU [15], R. T. ROCKAFELLAR [17] or 1. EKELAND &
R. TéMaMm [9]). We define the asymptotic function

o p()
Yl = lim = (1.4)
which coincides with the conjugate of the indicator function of X:
Yool§) =sup . (1.5)
nek

It is shown in [8] that for u in the space M1(£2, Y) of bounded measures with values
in ¥ we may define a bounded measure 9(u) which coincides with o g when
4 = gdx in an ordinary sense. We recall a proposition established in [8].

Lemma 1.1. Let (u;) be a sequence in M*(Q, Y) which converges weakly (vaguely)
to a measure u and let w be a convex function as above; then for a subsequence still
denoted (1;), p(u;) converges weakly to a measure v in M () and

pp) =v. (1.9)
Another interesting fact is the following approximation (¢f. [8]).

Lemma 1.2. For every u in M'(2, Y), there is a sequence of functions (u;) in
%5(02, Y) such that for every convex function v satisfying (1.1) and (1.2):

w(u) — p(u)  tightly on 2,
i.e.
[ w(u) o — f W) g for every ¢ in €(82).

Remark 1.1. This result easily enables us to extend the inequality (1.2) to bounded
measures on 2. In other words, for each u in M(£2, Y), we have

collp] — D =w) S er((u] + D). (1.10)
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We now recall two lemmas on Concentration Compactness (cf. P.-L. LiONS
[13]).

For d =1, we define the space

VYB(Q2) = {ue L'(9Q), Viuc M*(Q,R™)}. (1.11)

For d <N, let us define N* = N—d It is known that
VIB(Q) = LYD), ¥V g < N*, (1.12)
V4B(Q) ?L"(.Q), Vg<<N*!, (1.13)

A particular case of Lemma I.1 in P.-L. Lions [13] is

Lemma 1.3. Let (u,) be a bounded sequence in V*B(£2), converging weakly to
some u and such that |Vu,| converges weakly to u and |u, V" converges tightly to
v where u, v are bounded non-negative measures on £2. Then there is a positive con-
stant ¢, a sequence (x;) of distinct points in 2 and a sequence (v;) of non-negative
numbers such that

y=|ulN" + Zvjéxj, (1.14)
jeJ

p= |Vl + e Y vV by (1.15)
jen

where 0,; denotes the Dirac measure at x;.
We need another lemma which is also a particular case of a result in [13].

Lemma 1.4. Let u, v be two bounded non-negative measures on RN satisfying
for some constant cy > 0

1/N*
( [le™ dv) <c(flolw (1.16)
RN

Jor all ¢ in D(Q). Then there are a positive constant ¢, a sequence (x;) of distinct
points in 2 and a sequence v; of non-negative numbers such that

v=290

e M= cgl vVt o, (1.17)
Given a differential operator S with constant or ¥ coefficients, we define
X = {ue LY(Q,R"), Suc M* (2, E)}

where E denotes the space of symmetric tensors of order two in RY. X is a Banach
space under the natural norm

luly = |uly + |Sulr (1.19)

D¢ ot Y means that the injection from X into Y is compact.
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where | |; denotes the L' norm and | | denotes the total variation. We may also
endow X with its weak topology which we define by the following family of semi-
distances:

e(u, v,9) = |u—v|y + | (Su — Sv) ¢| (1.20)
where ¢ belongs to ¢(£2). Thus u,, tends to u weakly in Y if
u,—~u in L'(£),
Su,, — Su in M'(2) vaguely.

1.2. Compactness when S is the gradient or the strain temsor operator

In this section we discuss conjectures on the space X introduced in Section I.1
for the case when S is either the gradient V¢ with d << N or the strain tensor opera-
tor ¢ defined by

+__..

oT,  oT,
eij(T) = 3_x— ax]:l .

We now give the first result of this section.

Theorem 1.1. Let X be the space (1.18) when S is either V* for d << N or S = .
N
[ SR | - d * —
Welet N N_dsz Ve, N i
lower semi-continuous convex function that satisfies (1.1), (1.2). Then from any
bounded sequence (u,,) in X we may extract a subsequence, again denoted by (u,,),
such that

if S=c¢. Assume vy is a proper

u,—>u in L1(), Vg< N*
|, V" — (1.21)
Y(Stt) — 1

where v and u are two bounded measures on §2 such that there exist a positive con-
stant ¢y, a sequence (x;) of distinct points in 2 and a sequence (v;) of nonnegative
numbers such that

v=ul¥ + ¥ b,

jelJ

w= p(Su) + co 3 9N6, .

ieJ

(1.22)

Proof of Theorem 1.1. This proof borrows ideas from P. L. Lions. In either
case, X = LV and X <z L% g << N*; then if u, is bounded in X, using (1.9),

we easily obtain (1.21) for a subsequence. It remains to prove (1.22). Using
Lemma 1.3 we obtain

v=|ul + Zv; 4,
| Sttyy | = p* = |Su| + Z v} §

Xj'
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Now using Lemma 1.1, we find

@ = p(Su)
and using inequality (1.9),

w(Su,) = co(|Su,,| — 1).

We thus obtain
w= colu® — D).

Now let us assume S = V9. Since y(Su) is absolutely continuous with respect
to | Su|, to complete the proof it suffices to show that | Su| and Dirac masses are
orthogonal for N = 2: indeed let X, € £2 (we may suppose X, = 0) and let
us show that lim [ |Su|=0.

>0 pd,r)

We introduce the notation B*(0,r) = {(x’, xy), xy > 0} \ B(0,r), B~(0,r)

= {(x, xn), Xy < O} N B0, r), I' = (x’,0)N B0, r), where B(0,r) denotes the
ball of center 0 and radius r. We have

Ny

S|,y =0= [W]

xN:O

N—1 u
and [5)—6,\,—4] belongs to L!(Xy = 0). Then for given 6 > 0 we may choose r> 0
N

such that
AR I
f [——] ldx’| < 4.

N—1
r oxy

Moreover, Su is a bounded measure on 2 N {X, > 0} and on 2N {Xy < 0}.
Thus we may choose r > 0 such that

AR

sl

which shows indeed that |Su| and the Dirac masses are orthogonal for N = 2.
We now turn to the case S = ¢. Using a result of BrEzis & LieB [4] and
taking v,, = u,, — u, we see that

— [loaM + [lun M = [lul™
and we wish to show first that

[1),,,|N*—>Z'vj6xj = A.

[isul= [ Isul+ [ |sul+

B(O,r) B+{0,r) B~(0,r) B(OHN{xp =0}

= 34,

To that end we will show that for a subsequence we have
Jvm lN* - A‘a ‘8(Um)! ’*)’,

where (4, p) are two bounded measures which satisfy the assumptions of Lemma 1.4.
Let @ be in 2(2), ¢ = 0. We have by Proposition 1.3 of R. TémaMm [24], for
instance,

([1oa@ D' = ¢ [|e@np)].
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For some positive constant ¢, by passing to the limit and using u,, — # in L'
strongly, we get

Sl dy™ < e(flp[v) + 0
which implies
v= 270, for some x; and
i
and then
A=lul™ + X0,
i
Now for ¢ in 2(£2) we have
([lunp ) = ¢ [e [unp]
= o(fe [unp| + [ |un ® Vo))
< e [ 9(en)) ¢ + 2 fo + [ |, ® Vo
and then passing to the limit,
(Jlel™ ) S e fodp + e, (flu @Vep| + [p).
Now let ¢ be in 2(]—1, +1["), o = 1 on a neighborhood of 0, and % > 0;
let g(x)=0p (ic;_x,) . We have

lim [ |e/N" v = v, lim[g=0

oo o) " e

B(X;,m) n

and

]IIN

1IN

o)t
) e

1/N*
=( 1) el
B(X;,m)

Since u belongs to LN”, this last expression tends to zero when 7 —> 0. We finally
obtain

Ly
Mg?va 6):,-

or every x;, i€ J, and

1
PXRVAE

>
#= c

Xi*

Now, as with V¥, we see that for N = 2, f |e(u)| = 0 and using
{xo}

p(ew) = p = lim p(e(u,)),
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we obtain
1 .
p=ye|u)+—Zn" o,
which completes the proof of Theorem 1.1. [J

Theorem 1.2. If (u,) is bounded in X and y(Su,,) tends to a measure yp which
has no Dirac masses, then u,,—>u in LYe(£2). If, moreover, the convergence of
w(Su,,) towards u is tight, then u,,—> u in LN*(). For S = ¢, or V, we have in
addition, ygu, — you in L*(I).

Proof. Let us suppose that ¢(Su,) tends to a measure 4 which has no atoms.
Then by (1.21) »; =0 for all jé N and |u,[N" converges vaguely to |u[V".
We note that for all open £’ relatively compact in £,

* N*
[ 1ul¥ = [ |uf™".
Q Q
Indeed, we have by lower semi-continuity of the total variation on open sets

[lul =tim []u, ",
& &

and by upper semi-continuity on compact sets
im [V =Tm [ |7 < [ "
o 2

These two inequalities imply

limgf [u, V" = gj [uN*.

This property and the weak* convergence in L are sufficient to ensure the
strong convergence in LV*(£2’). Let us now suppose that ¥(Su,,) tends tightly to
»(Su) on 2, and show that u, — u in LV"(2). Suppose for a while that this is
true when S =V or ¢ Then, if d>1 and V%, is bounded in M (RQ, E),
V4=ly, is bounded in BV. The result for d = 1 implies that V¢!, tends
to V¥ 1y in L¥™N=1 then u,, — u in WO NN=1 and finally u,—>u in LNV
Assume now that § =V or ¢. Use of Lemma A.4 in the appendix of [26], Part 4,
provides for every ¢ > 0 given a compact set X in £ such that

1
[ p(Su,) < s( [ |Su,| < —(s))
2K Q\K 51
for all n€ N. For given 8> 0 we define the open set
0, ={x€ Q,d(x, 002) < 6}

and put Iy = 08, — 0. We may choose 6> 0 such that 2, Q\ KX,
f9(Su)<e and [ |uN" < e By Fubini’s theorem, u, tends to u in L'(I'y)
25 Q5

for almost every 4, so there exists N€ N such thatfor m> N, [ |u, —u|<e.
I
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We now define #,, to be equal to u,, in 2, and tou in 2\ £2;. #,, belongs to X(2)
and
S, = St/ Qs + Wy — W) 0y, f S=V,

= St/ Q25 + €, —w) 0ry; I S=¢

where 8, denotes the superficial (N — 1)-dimensional measure on Is, and
[]

J (p) is the tensor with components 7 ;(p) = % (pn; + p;n;). This leads to the
estimate

[S@, — W= [|SWU, —w)|+ [|u,—ul
2 25 Ty

< [|Sun|+ [|Sul + [lun —u|=3e,
Qs 25 Ty

and thus
[ it = ul* S f fi — uf”
2ia, Q
= C('Q) f Il—lm - ul
Q
= () - 3e.
All these inequalities imply that [ |u,|["" < c(£2') ¢ and using Lemma (A.4)

2104
of [26] Part 4, we finally conclude that |u, |V* converges tightly to |u|"".
We wish now to prove thatif § =¢ orV and u,, tends to u in L'(£), v»(Su,,)
— 9(Su) tightly on £, then

u, —>u in L'(0£).?

Let us remark to begin with that according to Lemma A.4 in the appendix of
[26], Part 4, for every % > O there is a compact set K in £ such that for every
meN, [ (Su,) <=u. This implies by (1.2) that
2\K
[ | Stn] < Con + meas(2\ K). (1.22)
NK

For 8> 0 we define once more the open set 2, = {x¢€ 2, d(x, ¢£2) < 8} and
set I's = 682;\ 2¢Q2. We may choose > 0 such that £, 2\ K and

f |Su| < %. By Fubini’s theorem, u, —u in L'([), for almost every 4, so
Q2
we may choose M ¢ N, such that for m= M

f[u,,,—u]<77, (1.29)
Dflum—u|<n (1.25)

because u,, converges to # in L'(£2). We now recall the following lemma, proved
in the appendix of [26].

1 This property has been proved by R. TéEMaMm [22] for ¢ = |- |.
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Lemma A.1. There is a positive constant ¢ such that for every F¢ L*(0£2) (or
FeL®(@2,RM)) there is a o¢c L(2,RY), divec L®(2) (or o€ L®(Q,E),
div o€ L¥(R2,RN)) which satisfies 6 -n=F (or ¢ -n=F), and

(o] + [div 0]o) = € | Flo. (1.26)
We apply the above lemma with F,, = IZ’" — mE Let us then consider o,
o —
which satisfies ¢, n = F,, and
|0 oo + [diV 6, | = c. (1.27)

We have by Green’s formula on 2
me'(um_u)_ f(o‘m‘n)(um_' u)
r I
= [S@, —w:o,+ [(u,—wdive,
24 25
and then using (1.28), for m = M, we deduce
Jlm —ul=c [luy—ul+ [[|Sul4c [|u, —u|<2ce+ 2
r Ts g O

by virtue of (1.24)-(1.27). O

1.3. Compactness when S = V¥ jn RY

We present here certain theorems on compactness in the space VVB(Q)
(where N is the dimension of ). The space V2B(£2) for N = 2 has been denoted
by HB(£2) and has been studied in [7]. It is easy to show that the following results
established in [7], when N =2, are valid if N > 2, namely,

VNB(2) — C(2) (1.28)
and if 002 is sufficiently smooth (piecewise CV for instance),
VNB(2) < C(D). (1.29)

We may endow VVB(£) with a weak topology which can be defined by the
countable family of semi-distances

e(“mu,‘}’): ,un—'u|+ ]va(un"—u)‘pl (130)

where ¢ belongs to %,(2).

If we endow the space of continuous functions on 2 with the topology in-
duced by pointwise convergence, the injection (VVB(£), ¢) = C(£) is not com-
pact, as it is shown by the following example:

Let g€ 2(£2), with ¢ = 1 on a neighborhood of 0¢€ 2 and let ¢, be defined
as

Pu(x) = @(nx).
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It is easy to see that ¢, is bounded in VNB(). Indeed

Vg, (x) = n¥ (V) (nx)
and then

!;[VN L] () dx = [V [V | (nx) dx = [ |V (x) dx.
R

This property and the convergence of ¢ to 0 in L'(£2) imply that ¢, tends to
zero in VVB(2) weakly. But ¢,(0) = ¢(0) = 1 shows that ¢,(0) /> 0.

For VVB(£) equipped with the topology of the norm it is clear that the in-
jection of V¥ B() in C(£) is compact. A more useful topology introduced in [7],
is the following:

Let ¢ be a convex function which satisfies (1.1). We define the distance

dy(uy, ) = |uy — o]y + | 9(V¥uy) — p(VVu,)| (1.31)
and state

Theorem 1.3. Let X = V¥B(Q), and let (u,,) be a bounded sequence in X.
Then we can find a subsequence, still denoted (u,,), such that u,, —u in LY(Q)
VY g < + oo and in VNB(Q) weakly, where u belongs to V~B(2). Moreover there
are a positive constant c, a sequence (x;) of distinct points in 2 and a sequence v;
of non-negative numbers such that

U, —u-+ Y, vy; pointwise on 2, (1.33)
jeN
w(Vu,) = u = w(VNu) + ¢ 3 |y 6xj. (1.34)
j

Corollary 1.1. If u, — u in HB(2) weakly and if \VVu,,| tends to a measure
1 which has no atom, then

U (x)—ulx) Vxel.
Remark 1.2. Corollary 1.1 proves a conjecture of DE GIorGI [5].

Proof of Theorem 1.3. We may suppose that u, tends to # in VVB(Q) weakly
and that »(V¥u,) and |V¥(u,, — u)| converges vaguely to bounded measures u
and . We denote by v the function defined for every x in 2 by v(x) = lim (u,, — )

(x) = lim (v,,(x)). © is bounded and v equals zero almost everywhere with respect
to the Lebesgue measure dx.

X — Xo

Let x, be such that [p(x,)| > 0. We define o.(x) = ¢ ( .

in the proof of Theorem 1.1 and & <C d(x,, 2£2). Then
|@n0) (k)] = ¢ [ |VV@,0)]
2

) where g is as

<c [|VV,|lel + X [1CkVPv, VN 7]
02

P<N
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where ¢ is some positive constant. For p << N, V?p,,— 0 in L'(£) and then

0(xo)| = | (v0) (x0)| = ¢  lo] di.

Letting ¢ tend to zero, we conclude that u{x,} > 0; thus the set of x such that
[o(x)| > 0 is at most countable. We may write

v =291y,

where »; = v(x;) = 0. By the procedure carried through for » = lim (u,, — u),
we obtain
v == 22]' I{J’j}

for some »; in R+, and y; in £. Of course we may replace (x;) and (y;) by their
union and reindex in order to have v =Xl v=2y; lgyy. Let us now
note that

B=p+ [V

X — X; : .
and apply p to g, 0/(x) = ¢ (T) . Letting ¢ tend to 0 we obtain

sup (7], |%) 0, = cu,

because [ |VVu|p;—~0 when e— 0. (Indeed, according to a theorem of
[7], |[VVu[ has no Dirac masses for N = 2).

To finish the proof of Theorem 1.3, let (u,.) be a subsequence of (u,) such
that

w(vNum’) U

and let J be the subset of N such that u({x;}] > 0 forall j€ J. For x = x; the
inequality, above, implies that #,,.(x) — u(x) — 0. Now, by the diagonal process,
we may extract from (u,) a subsequence denoted (u,) such that

(um" - u) (xi) >V € [21'5 El] s
for all je J. We thus obtain

Upr >t + X, 1y
with
W(Sitye) > i Z p(S) + ¢ Z [ 8, [

We now obtain a sharper result.

Theorem 1.4. If (,,) is weakly convergent to & in VNB(), and if |&,, 15 .~| !
convergents vaguely to u such that

WX eRY, x; =y} =0 for all y in RV,

Then (§,) converges uniformly to & on every compact subset of £.

. . o
v &, ..., denotes the partial derivative ¢ .
stylaudy 3xi, o axik

iy
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Proof. We assume that N = 2; the extension to the general case is straight-
forward. By hypothesis [z {(x1, x2)} = 0 V (x4, x;) = x€ £, soby Theorem 1.3,
(£,) converges pointwise to & in £2. To that end we show that (£,) is equicontinuous
and then use the Ascoli-Arzeld theorem. Let x = (x, x,) be in £ and g in
2(£2), o=1 in a neighborhood of x. Noticing that |(¢€,) (,| tends tightly to
a measure which has no mass on lines parallel to the coordinate axes, we see that
it suffices to prove the theorem for a sequence (£,) with fixed compact support in £2
which converges tightly to a measure g which has no mass onlines x; = const. This
implies that &, , is also tightly convergent to x on the open set: £, =]— oo, x,[
x]— o0, x,[ N 2 of RV as well as on its complement £2,. Consequently, using
Lemma (A.4), for every given &> 0, we perceive that there are compact subsets
K, of 2, and K, of 2, such that

[ el <e [ |Gl <e. (1.36)

20K, 2:\K,

Now let 4 be a positive number such that & << inf (d(K, 0£2,), d(K,, 682,)) and
let y = (yy,y.) be such that |x; — y,| <4, |x;— y.| << 8. We define the
sets

B(xy, x;) = linf (xy, x,), sup (x,, x,)[ xR,

B(y, y2) = Rxlinf (yy, y2), sup (1, ).

By using (1.36) and the assumptions on §, we obtain

|&n12] < 2e.
(B(x1,x2 )\ By, y2 )N 82

Therefore, employing the explicit expression of &,(x, y) and &,(z, t) given in [7],
we get

¥y

\En(xa y) - En(z’ t)| = f f 5:1,12 - _f _f 5}1,12

= f ]5,,,1 2 ’ < 2
(B, )V B, )N

which implies that the sequence (&,) is equicontinuous. []

It is natural to ask whether the convergence is uniform on !3, when 080 is
sufficiently regular. The following theorem establishes uniform convergence in

2 in a sufficiently general case.
Definition. 2 has the square cone property if it can be covered with a finite

collection {(O,), i€ I} of open sets with the following property: for each i there is
an open cone C; of right angle and vertex 0O such that

x4+ CYNO,C R, foral xinNQNO;.
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Proposition 1.1. Let us suppose £2 has the square cone property. Then if (£,)
converges weakly to & in VB and |&, 1, | converges tightly to a measure y which
has no mass on lines parallels to the coordinate axes, then (§,) converges uniformly

to & in Q.

Proof. We assume once again that N = 2. To begin with, we note that the
computation of £(x) in terms of &, given in [7] may be extended to the x’s in 602
when £ has the square cone property: indeed suppose x€ 02 and let (¢4, é,)
be an orthonormal basis of R? such that C is the cone

C={le, + pey, A <0, <0}

with ((xy, x;) + C) N\ BC 2, where Bis a bounded set centered at (x;,x;) = x.
By choosing ¢ in 2(B), ¢ = 1 on (x,, X;,), it is easy to show, following the proof
of Theorem 3.3 of [7], that

Y1 Y2

N(yi, y2) = f f (08,12 (2, 2) dt dA (1.38)

—_—00 — 0

is continuous on BN 2 and coincides with of for almost every y = (yy, ¥,)
in 2.

The remainder of the proof is merely a straightforward modification of the
arguments used in the proof of Theorem 2.4. []

Corollary 1.2. Let 2 verify (1.37) and assume that |&, 15| — |£ ;| tightly on Q.
Then &, converges uniformly to & on Q.

Proof. We saw in [7] that if
Q:QIU.Qz, QIAQ_Z:F, .Qlf\.szﬂ

where I"is (N — 1)-dimensional and C? and 7 is the unit normal pointing from
2, to 2,, we have for £ in HB(2)

og*  ogt
Ve = VV8in, + TVéi0, + (5 — 55 (1 @ 0r,

This implies that if I” is a line x; = const. then n = ¢; for j=i and

o0&
V& r = (gg) e; ®edr
hence |&,,|,r=0. The assertion of the corollary now follows by Proposi-
tion 1.1. [J

We showed in [7] that when 02 is piecewise C?, the trace of u€ HB(R2)
on 2L, which is defined since u belongs to €((2), is in fact contained in a much
smaller space, denoted by yo(W?>'(£2)). We also defined the second trace map y,
and showed that y,(W*'(2)) = L*(I"). When (u,) is weakly convergent to u
in HB(R), itis not generally true that you,, — you in yo( W), nor that y,u,, — yu
in L'(I"). The proposition below gives conditions sufficient that yeu, > you.
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Proposition 1.2. Let us assume p(VVu,) converges tightly to u¢ M'(2) and
u,— u in HB(Q) weakly. Then u,—> u in yo(W?>") (strongly), and v,u,— y,u
in L\(I).

Proof. Since p(VVu,) converges tightly, by Lemma A.4, we may choose for
all &> 0, a positive number § such that if 2, = {x¢ Q, d(x, 22) < 8}, then

[IVVu,| = ey [ ¥(VVu,) + ¢, meas 2; < ce, (1.39)
25 Qs

for all n€¢ N. We may impose, in addition, the assumption
[1VVu|<e
Qg

u
“on

ou,

and if I'; = 00Q; — 02, we may suppose that u, — u in W>(I), and—a;l- —
in LY(I"). Thus there is an N, such that for all n> N,

<e. (1.40)

LT

2
|ty ~ ule’l(I‘a) <g, l'a‘h‘» (4, — 1)

Now recalling the definition of |u, — ul, w21, we let F,€ yo(W>1(2))** and
G,, € L*(I") be such that

=G, u,—u>+¢

-
—=\Uu, —u
on ” Ly(I)

[ty — tlyyw2ty = (F,u, — u) + ¢,

(1.41)
and
an IVO(WZ’I)" é 1, ]Gn|oo g 1.

Now we use LLemma A.2 in the Appendix of [26] to provide a sequence M,
in L¥(Q, E)!, with V - VM, € L*(£), such as to satisfy bo(M,) = F,, by(M,)
= G, and [ M, | + |V -V - M, | = {|F,| pyo(W)* + |G, |1} = 2e.

By the generalized Green’s formula (of [6]) we obtain

¢
<Fms u, — u> - ‘/‘5? (un - ll) Gn - <b0(Mn)3 U, — u>F§ + <b1(Mn) U, — u>Pa
r

= fVV(u,,—u)M,,— f(u,,——u)V-V-Mn
25 25

1 We denote by yo( W21)* the dual space of yo( W?!) endowed with the induced topol-
ogy of W2’1, ie. IulyD(szl) = Ui=l}f/‘1, o2,
2 For every M in L®(Q, E), V-V - M € L™(2), we defined in [6] bo(M) and b,(M)

0
as elements of yo(W2)* « L=(I"). They coincide with div (M - n) + a—(M -n-t) and
s

M - n-n when M is sufficiently regular, and are such that the following Green’s formula
holds:

[Vus M~ T Mu = [y (M) 2o~ <o), w5,

for every u in W21(Q).
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and then, using (1.39) — (1.41) and the convergence in L(£2), we get for some N
and for every n> N

+ {un - uIVo(WZ’l)‘ = f(un —uwF,

0
5;1: (un - u)

LY(TI)

< e J179m1+ J199ul 5 ¢ f iy ul = )

LY(1"g)
+ |lu, — uljwz,l(ra)) = dce

which finishes the proof of Proposition 1.2. []

Part I1. Applications

2.1. Applications to the Calculus of Variations,
Capillarity Theory and Antiplane Shear in Plasticity

The theory of minimal surfaces, capillarity and antiplane shear in plasticity
lead to variational problems having the common form

inf ( [ {$(Vv) — Lv}) Q.D
v=uo/l'y \2

where £ is an open bounded set of RV, with a smooth boundary I", I = fo v Iy,

I’y and I'; are two open connected subsets of I, Lv = ffv + fFv feLN(Y),

Fe L*(I'), uo € H'(I"), and ¢ is a convex function on ]RN Wthh satisfies (1.1)
and (1.2). In [23] TémaM showed that the dual problem of (2.1) is simply

sup (— fd)*(p) + fp . nuo) . 2.2)
divp+f=0 2 Iy
pn=glly

Moreover, inf (2.1) = sup (2.2). The existence of a minimizer for (2.1) has been
studied in {23], [21]. It is natural to consider the space BV(2) = {uc LY(Q),
Vue MY(2,R")}, and to extend Problem (2.1) to a relaxed problem defined by

inf ( f#(Vu) + f bo((tg — u) 1) —Lu) (2.3)
ueBV(£)

where ¢, denotes the asymptotic function of ¢, or, equivalently,

8 = tim X0 re)

Moreover, it has been shown that inf (2.1) = inf (2.3). If we replace in (2.3) or
(2.1) L by AL, the analysis in [23] shows that inf(2.3) > — oo if and only if
A NS, =0, where

={o€cL? dive + Af = 0,0 n= AF/T'}
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and

A = {oe L}(2,RY),0(x)€ Ka.e}.

In order to determine the set of ¢’s such that dive + Af= 0, ¢-n = AF,
TéMAM introduced in [23] the limit analysis problem

inf [ $o(V0) 2.4
2
Lv=1

and studied its dual. He obtained that

inf [ $oo(VD) = 2} =1 2.
Y AR~ S @9
v=0T% dive+if=0
Ly=1 ov=2AF

In an analogous fashion one may define the problem

E [ 6a470) 2.6)
o=0|Ig
Ly=—1
and prove that
veg}fm [ $e(Vv) = ;s(,‘ég {—1} =A. Q.7
v=0T dive+2f=0
Ly=—1 ay=AF

Therefore a condition necessary and sufficient that 4" N\ &, not be empty is
—A=1= 2.

Moreover it may be shown, as in [23], [21], thatif —4 << A << 2, all the minimizing
sequences of Problem (2.1) or (2.3) with L replaced by AL, are bounded in BV(£2).
This hypothesis (called the safe load condition)is sufficient to show that a generalized
solution for (2.3) exists. In what follows, we use Theorems 1.1 and 1.2 of the first
chapter to improve this existence theorem: for instance, the minimizing sequences
converge in a topology stronger than the weak topology of BV(£). Another
more interesting application concerns the limit analysis problem: we will show

that, unless 1 is a special numberi which will be determined later, the relaxed
problem of limit analysis

veLfaI\i(f{n{gf b V) + Qf boc(—0) 17} (2.8
has a solution in BV(£Q).
We begin by giving a new formulation of Problem (2.8): Let £’ be a bounded

open set of RY such that @' N Q2 =0, QN Q =T, and define Q, = 2
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UV 2V Iy, Assume (for technical reasons) that u, = yoto, Where yo denotes
the characteristic function of Iy, and let U, be in H(2') with U, | I'o = uo;
we may extend u€ BV(£2) to 2, by setting

- {u in 2 2.10)

“T\u, in 2
Then # belongs to BV(£2,), and applying Green’s formula for BV(£,) we obtain
Vft:Vuig—l—(Uo—u)ﬁ 6,~D+Vu0|g». (211)‘

Let us now recall certain results obtained by R. KouN & R. Timam [12].

Proposition 2.1. For any u in BV(R) and any ¢ in L¥(Q, BY) with div o ¢ LN(Q),
let (6, Vu) denote the distribution on Q defined for @€ €5(2) by

f(o‘, Vu)p = — fdiv oup — [ o Veu. (2.12)
Q 0 0

Then (o, Vu) may be extended as a bounded measure on 2 which is absolutely
continuous with respect to |Vu| and satisfies

(0 Vu)| < o] |Vul. (2.13)
Moreover Green’s formula holds in the form
[ Vwye+ [udivep + [uoVe = [o-nup 2.149)
@ @ 17 r
Jor each ¢ in %1 ().
Let us now define on 2\ I'y the measure
Vit =Vu -7+ 7 nuo — u)dr.

By applying Green’s formula (2.14) to the pair (v, v) where u€BV(Q), 7€
LY(Q,E)N\ &#,,, we get

f Va1 = fVﬁ-t—}- ft'n(uo-—u)
aor, P} I,
= — fudivr+ fr-nu0+ f-r-nu
2 Iy Iy
= [fu+ fFu—}— ft-nuo
2 r, I

which implies that we may write Problem (2.8) in the following form:

_inf {fw(va)— [Via-v+ fr-nuo}. (2.15)
ueBV(2y) \ 2 2 Iy
u=ug|

We now state the main result of this subsection.
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Theorem 2.1. Assume there is a minimizing sequence (u,) for Problem (2.3)
that is bounded in BV(L,). Then we may extract from it a subsequence, likewise
denoted by (u,,), such that u,, tends to u, u¢c BV(R), in the following sense:

u,—>u in LY(Q),
Va, — Vu  vaguely in Q,
w(Vu,) — w(Vu) vaguely in L2,
u,—u in LYN"1(Q,).

Movreover u is a solution of Problem (2.15).

Proof. Let (x,) be a minimizing sequence which is bounded in BV(£2,); then
there is a subsequence, likewise denoted by (u,,), such that
u,—~u in L'(2),
Vu,,—~Vu in M(£,) vaguely.
We may suppose, in addition, that ¢(Vu,,) converges vaguely to a bounded measure

u on £, that satisfies (Vi) = p, by virtue of a lemma in [8]. Now let 4
be a positive number. We denote by £, the open set 2; = {xcR", d(x, I'}) < é}.

Let @, be in 9(2,) with @; = 1 in a neighborhood of I'y in RV and set
gs = | — @,. For every v in L¥(2, K) N\ &,; we have, by applying Green’s for-
mula (2.14),

f (V) : 7) g5 = — fi‘m divrgs — fumf Vgs + fuo‘r T Hgs-
alr, aq Q
The right-hand side converges to — f u divtgs; — f ur Vg, + f uoT - ngs, Which
equals f (Vu: 1) g5 (by virtue of Green ] formula (2.14)). Because u = p(Vug)

ur,
on £’, the weak lower semi-continuity of the integral on open sets of bounded meas-

ure implies that
[ rgo= [ugs— [v(Vuo)gs
@Ur, L o
= lim f(v{‘m) 8s — f"P(VUo) 8s
@ o
=lim [ p(Vu,)g.

oUr,

Now, for given &> 0 we may choose 4> 0 sufficiently small that

[ v@<e, (2.16)
suppe s

gf lulps <e. .17

frle [|Vu|gs<e. (2.18)
2

According to Lemma (7.8) of [24], the inequality
w(Vﬁm) - vi'lm ‘T 2 —1/)*(1) (2‘19)
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holds on 2N Iy, and so

[ vV — [ Vuns [ p— [ Ve

Qur, aur, QT aor,
= [ ugs— [ Va:v)g + [ pps— [ (Viiit)g,
QU 2y QU U,
lim [ (Vi) — Vi ) g+ [ |nlgs + [17]e [Vit| @s
QUr, QU 2q
<lim [ (@(Vit,) — (Vit,:7) g+ 2 (by (2.17) and (2.18))
QUr,
stm [ (p(Va,) — (Vi) (g + @) + 26+ [p*@)gs  (by (2.19)
QU 20

slim | (p(Vir,) — Vi, :7))+ 2 +¢& (by use of (2.16)).

29U,

Since ¢ is arbitrary, we obtain
[ v(Va)y—Vi:r< [ p— [ Va:e

[EAVE /N QU QUT,

=inf P — fr'nuo
Iy

< [ wWR— [ Vair

QU QU

which implies both that u is a solution for Problem (2.3) and that (Vi) = u.
It suffices then to apply Theorem 1.1 in PartI to conclude that u, — # in
LN~ 1(£0).

We now present a sharper form of Theorem 2.1.

K
Theorem 2.2. Let us suppose that there are a 6 >0 and a oc IV (.Q, m)

such that divec L¥(Q), o - n = F/I’y. Moreover,assume that there is aminimizing
sequence (u,,) for Problem (2.15) that is bounded in BV. Then we may extract
from (u,) a subsequence, likewise denoted by (u,,), such that

U, —u in LNN"HQ,),
umlpl —> u/F]_ in LI(FI).

Remark 2.1. Theorem 2.2 improves Theorem 2.1 mainly in showing u,, -, — u/I";
because, in general, weak convergence in BV(£,) does not imply convergence of
the traces on I". Let us now see an important consequence of Theorem (2.2). We
consider the problem

- ]il\}(fgo) { . pro (@(Vir)) — A Qf fu — 4 F[ Fu} (2.20)
u=ug|
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and we define the real numbers

i=  swpld @.21)
JoeLN(2,K),divoe LN
cn=AiF{Iy
A= sup{—24} . (2.22)

30eLN(2,K),divoeLY
on=AF/Ty

It is obvious that 4 < 71, —A4 = —A. It may easily be seen that the strict

- K
inequality A << A implies that there exist 6 > 0 and o in LV (.Q, m)such

that dive €LY and o-n = AF/I';. We then obtain

Corollary 2.1. If 0 <1 <7< 2 (respectively —A< —A=2A=<0) and if
there is a minimizing sequence (u,,) for Problem (2.15) (or (2.8)) which is bounded
in BV(£2,), then

u,—u in BV(Q,) weakly,
w(Va,) — w(Vu)  tightly on £,
and
Uy, > u[ Ty . (2.25)
Moreover u is a solution of Problem (2.8).
Remark 2.2. When A€ ]——@,Z[, it was shown in [24] that every minimizing

sequence of (2.8) is bounded in BV(£2,). Moreover, in that case we may give
a rather simple proof of Corollary 2.1, which is due to R. TEmMam [25]. Indeed,

let ' be in 4, A[. We may show (following the proof of Theorem 2.1) that if (u,,)
is a minimizing sequence which converges weakly to u in BV(£2,), then

f (Vi) — ¥Lu < lim [ 9(Vu,) — ' Lu,.

QU Qur,

Since (u,,) is a minimizing sequence and « is admissible for Problem (2.8),

[ v(Vu,) — ALu,—~ [ p(Vu) — ALu.

2T, QU
Now, writing
f w(Vu) — ALu
(2727 °Y
A A
=—| [ »(Vu) — ¥Lu|+ (1 ——,) [ w(Vu)
}' QU 2' QUry
y)

A

ls

|
~

< —lim (Q vfpo w(Vi,,) — z'Lu,,,)) + (1 — —j—) o Jfr., w(Vit,)
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we show that lim [ (V&)= [ w(Vi,), which implies that y(Vii,)
mrE0 oo, QUr,

—9(Vu) tightly on £,. By applying Theorem 1.2, we get u,;0 — 4/sq,,

which means that w,,r —u/I';. []

Let v= (1 + d)ocH. We may show, as in the proof of Theorem 2.1,
that if (u,,) is a minimizing sequence which tends weakly to « then

[ vVu)y— [ Vurvr=lim [ 9Va,)— [ Vi,:.

Qur, QUr, Qur, aur,

Now let ¢ be the solution of the dual problem of (2.15). According to Lemma (7.8)
of 24], y(Vu,)) — Vu,,: 0 = —p*(e) on 2V I'y, and since (u,) is a minimizing
sequence,

[ (V@) — V(@) 7 + y*@) — 0.

N/ T,
Thus
p(V(u,)) — V(u,) o + p*@©)—0 tightly on 2\ I.
Moreover, Theorem 2.1 asserts that u is a generalized solution, i.e.
p(Va) —Vu:0 = —yp*@©) on 2VUI,.
Using the fact that [ (u, — ) div (6 — 7) >0 and Green’s formula (2.14) on
VU T, we get ?
[ -7 nu=xlim [ — 1) nu,,
I 7y
—0 [Fu< —1limé [ Fu,. (2.26)
I I,

The opposite inequality is valid without the above assumption on ¢. Indeed
f Vu:6 = f p(Vu) + [ 9*(©)
Q2

QT QUr,
=lm [ »(Va,) + [9*©)
2T, Q2
=lim [ Vau,:o.
T eur,

Using again lim [ (« — u,)dive =0, we obtain [ Fu<lim { Fu, so by
mog Iy T
(2.26)
[ Fu=lim [ Fu,,.
I I
Now using once again the equality

lim [ w(Va,) — [fu,— [ Fu,
9 7,

QUr,

= [ »(Vu)— [fu— [Fu
2 r

Qor,
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we obtain

lim [ 9(Va,) = [ »(Vu.

20T, QUr,

Then y(Vu,,) tends to »(Vu) tightly on 2,, and Theorem 1.2 in Part I ensures
that (%,) tends to u in L¥V~1(Q,) and (u,,) tends to u in L1(I").

Let us now see¢ how the conclusions in Part I may be used to interpret limit
analysis for previous problems. Let us recall the statement of the relaxed limit
analysis problem introduced in Part II, (2.8),

inf { f ¢°°(Vu)+rf ¢°°(—u)ﬁ}, (2.28)

ueBV()
Lu=1 Q

which may be written also as

_inf { f ¢w(v&)}. (2.29)
ueBV(2,) QU r,

u=0/Q"

Lu=1

This problem has the dual
sup {4} = 1.

30eLV(Q,K),dive + AfelN
on=AiF| Iy

It is clear that 4 < i but it is not generally true that 1 = i as may be seen
from the following example. Assume that N =1, K= {x, |[x| < 1}, 2 =10, 1],
fis defined as

,o {1 on [0, 1/2[

—1 on ]1/2, 1]
and F; = F, = 0. These data imply that i = 4 oo. Let us suppose now that
t
6€K, o +Af=0, o(1) =0. We easily get o(t) = —A ff(u) du. We must
0
have [ = sup |o(t)| = |6(1/2)| = 2/2 and then
i=2.
We now state the existence of solutions of the relaxed analysis problem.
Theorem 2.3. Assume Z<i Then Problem (2.29) admits a minimizer u.

More precisely if (u,,) is a minimizing sequence for Problem (2.29) we may extract
from it a subsequence still denoted (u,,) such that

ﬂm —-> U in BV(Q()),
doo(Vut,) — do(Vu)  tightly on £y,

and consequently u,,—>u in L'(I')), Lu =1, and u,—>u in L"VN"1(Q).



146 F. DEMENGEL

1

Corollary 2.2. If K is the convex set K = {O‘,E lo;|* < 1} and if 1< 7o’

!

the limit analysis Problem (2.29) has a solution u in BV(2)'.

Proof of Theorem 2.3. The proof is very similar to that of Theorem 2.2.
Indeed let (u,,) be a minimizing sequence for Problem (2.28). Then (u,,) is bounded
in BV(£,) (since ¢,,(V(w,,)) is bounded) and Lu,, = 1. We may extract from (u,,)
a subsequence, still denoted by (1,,), such that #,, tends to u in BV(£2,) weakly. Of
course u = 0 in £'. If ¢ is a solution for the dual problem of (2.28), following
the argument in the proof of Theorem (2.2), we get

[ (Vi) — [ Vu:o<lim [ éu(Va,)— Vi, :o
Qur, Qur, U,
=2—A Lu,,
= 0.

This implies, as in the proof of Theorems 2.1 and 2.2, that ¢ (Vu) = Vu:o
on 2V Iy, so we immediately see that if Vu=+0, Lu= f Vu:o =

QUr,
f ¢o(Vu) = 0, and since ¢, is homogeneous, that u/Lu is a solution of (2.29).
22U, - =
In fact we will show that under the assumption 1 << 4, we cannot have u =0,

because Lu = lim Lu,, = 1. To that end, we proceed as in the proof of Theorem 2.2.
Since 4 << 4, letAbein ]7», Z[ and 7 be in LN(2), with 7(x) € K almost everywhere,
with respect to the Lebesgue measure dx. Since 7 belongs to K, ¢(Vu) — Vu:t
= —¢¥%(r) = 0, and by lower semi-continuity of the total variation of the positive
measure ¢.(Vu) — Vu:7 on the open set 2,, we deduce

f doo(Vu) — f Vu:t < lim f (P(Vat,,) — Vaa,,, : 7)

QJr, QU T, 20T,
=lim [ Va,:6— [ Vu,:7.
QU QU

This implies, by virtue of ¢, (Vu) = Vu:6 on 2V I, that
[Vu:@@—v)=lim [Vu,:(c— 1),
o ]

so by Green’s formula (2.14),
fFuglim fFu,,,.
ry R

On the other hand
f Vu:o = f d)oo(vu)

U, QUr,

<tim [ $u(Vity)

aur,
= A Lu,,

= [ Vu,:q
Qur,

! This Corollary proves a conjecture of R. V. Konn [11].



Compactness Theorems and Plasticity 147

and then f Fu = lim f Fu,,, We have thus obtained that
r, I,
lim  Fu,= [Fu
m-—>-+4 oo r r,
and so
1=Lu,—Lu.

Returning to the preceding inequalities, we find, in addition, that

lim f ¢oo(vam) = f ¢oo(v u) s
m>+% o0r, 0T,
which means that ¢.,(V#,,) converges tightly to ¢..(Vu) on 2o, and thatw,,, , —u/1"y,
by virtue of Theorem 1.2. []J

2.2. Application to perfect plasticity (Hencky’s Law)

Let us consider an elastic-plastic material which occupies an open bounded set
£2inR¥, N =3, and is subjected to a body force of density f, and to a traction
F on an open connected part I"; of 802. The displacement u is required to equal
uo on I'y (where Iy is also open and I" = I'y U T';). The problem of determining
the equilibrium configuration of the material is to find («, ¢) defined on RV X E
such that

U == Uyr,
P e KP
dive+F=0 in £ (2.30)
o'n=F/I

(e(w) — Ao:7 —0) = 0.

Here E denotes the space of tensors of order two on RY, &2 = & — 1 (tr ) 4
is the deviator of &€ E, K® is a bounded convex set of EP, which contains 0 in
its interior, and 4 denotes the operator of linear elasticity for homogeneous and
isotropic materials, i.e.,

1 1
Aijkh = m 6ij5kh + E (sikajhs
where K, and u are positive constants (see [18]). If we set

1
PAE: 8 =

+oo if £4 K,

the conjugate ¢ = ¢** of ¢* is a convex lower semi-continuous and proper func-
tion which satisfies

(tr &2 +41—”|£”]2 if £€ K= KPxRI

P*(§) = Q2.3

Ko
BE) =5 (tr ) + $°E)
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with
co(|82] — 1) < ¢P(EP) < ¢, (J€P| + D), (2.32)

for some positive constants ¢,, ¢;. The equations (2.30) may be formulated under
one of the weaker variational forms?

K
1 Dy D e . 2 __ . _
el g,(,,){gf #EO) + 5 @ivor = [0 [ gv} 2.33)

U:uD/FO

in terms of the displacement, and

1 1
su — [¢*P(dP) — — . } 2.34
diva+£—0: f ¢ ( ) 181{0 I‘{ 7o ( )
ov=g/I'
oPekD
in terms of the stress, where fe& LN(Q), Fe L¥(I")), uo€ HY¥(I,), uo = yoto.
These problems are dual, and inf (2.33) = sup (2.34) (cf. [24], [21]).
The study made in [24], [21] shows that if we replacein (2.33) L by AL, inf (2.33)

> —oo if and only if A N &, 50, where &, and X are defined as
P, ={0€L¥,E),dive + Af =0 in Q, ¢-v=Ag/Ty},
H = {o€ L}, E),o(x)c Kdx a.e.}.

In order to determine the A’s for which " N\ &; =+ @ we introduce, as in the pre-
vious section, the limit analysis problem

. D
inf [ 4@, (2.35)
divo=0
v=0|I
the problem dual to which is
sup {4} = 7. (2.36)
HGE.VZUX'

The following equality holds:
inf (2.39) = sup (2.36).
In an analogous fashion, we may state the problem
. D
Lulgg- . f $o(e°(®)). 2.37)
divo=0
v=0|1"g

We may define, similarly, 2= sup {—A}, and show that

FaNA =0
inf [ $(s°(v)) = sup {—4} = 4. (2.38)
oo FA=8 T
v=0{T,

! y denotes the outer normal to I
2 LD(R) = {uc LY(2, RM), e(u) € LY(2, E)}.
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A necessary and sufficient condition for &, N\ & not to be empty is that — 1 =
A = 2. Moreover, if —A<A< 2 then every minimizing sequence of Problem
(2.33), with L replaced by AL, is bounded in BD(£2). For that case KoHN & TEMAM
showed in [12] that a generalized solution for a relaxed form of (2.33) exists.
Following the study made in the previous section, we strengthen this existence

result (Theorem 2.4). Moreover, we will see that if 7 is less than a positive number

A which will be defined later, the relaxed problem of limit analysis, viz.,

Jat, (f =@ + [out@-o0) (2.40)"
vn=0|I,
divo=0

has a solution in BD(£2).
Now let us recall some of the results obtained in [12].

Proposition 2.2. Assume that w is in BD(Q), div u is in L3(2) and o is in L*(L2, E)
with o® € L(Q, E) and divoc LN(Q,RN). Let ¢°eP(u) denote the distribution
on 8 defined for ¢ in €5°(52) by

[PPW o= [diveoup — [o:u®@Ve—1 [trodivu.
2 Q Q 2
Then oPeP(u) may be extended as a bounded measure on 2 which is absolutely

continuous with respect to |e®(w)|, and the following weak version of Green’s for-
mula holds:

[P + 3 [trodivup
I} Q2
=— [divoup— [ou ® Vo + [o-n-up
o 2 I
for each ¢ in €1(Q).
We now define on 2\ I'y the following measure:
s@): 0 =e@):0/2 + a® - n-(ug — u), dp,,°

By applying Green’s formula in Proposition 2.2 for ¢ in L*(2, K) N\ &4, we get
[ e@:o= [e@):0+ [o-n-(u—w)
Ty

QU I, Q

= — fudivo—i— fa-n-uo+for~n-u
2 Iy I
= [fu+ [Fu+ [o-n-uo.
0 Iy Iy

t () =PI ()~ () — tr (6(0)) id.

2 We denote by u the extension of u to Qo by setting &’ = U, in 2’; 2 € BD(2,);
and divz € L*(Q,) if and only if w-n =uo* i;p,
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Therefore we may write Problem (2.33) in the following form:

K
_inf : [ PEPw) + = [Wiva)> — [ &Pu):o®
u€~BD(Q,,) Q\/ Ty 2 2 QDU
divucL2(2,)

e (2.41)
— % f(divu)a+ fa-nuo}.
o Iy
We now state a theorem which is the analogue of Theorems 2.1.

Theorem 2.4. Assume that there is a minimizing sequence (u,,) for Problem (2.41)
which is bounded in BD(R,), and that div (,,) is bounded in L*({2). Then we may
extract from it is a subsequence, still denoted (u,,), such that

u,—u in L(Q,),
$2(:2(i,)) > $P(P@)  vaguely on 2o,
diva, —~diva in LL(2y),

NIN—1

u,—>u in LY Y0,

and u is a solution of Problem (2.41).

Proof. The proof follows that of Theorem 2.1, by replacing p by ¢ and V by e.
We show, as in Section 1, that if (#,,) is a minimizing sequence for Problem (2.41)
which is bounded in BD(£2), and div &,, is bounded in L?, then for a subsequence
(#,,), u,, — u in BD(22,) weakly, div #,, — div u in L2(2,) weakly, and ¢(s(%,,))
— w1 = 0 vaguely in M*(£,), where p satisfies ¢(e(u)) = u. Proceeding as with the
gradient, we obtain for all 7 in 4 N &y

[ () —ew): D= [ pu— [ ew:7

QQUT, 2T, AT,

Slim [ $e@) — [ )T
Q2

22U, (VS
= inf P+ fr-nuo
Ty
= [ dew) — [ e@w:7.
[2LVF &Y U,
Then we obtain
p = lim ¢(e(14,))
= ¢(e(w)), on QU T,

and u is a solution for (2.34). This easily implies that (div ¥)? = lim (div u,,)?

vaguely, and ¢°(u,,) —¢P(u) vaguely. The conclusion follows by Theorem 1.1. [7]

We now give the analogue of Theorem 2.2.
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Theorem 2.5. Assume that F,c L™(I")), F-ne L™ \J HYI"), and that there
A
are 8> 0 and ¢ with o° 61——5——6’ dive e LN(Q), o-n= F/T'y*. Let us sup-
pose there is a minimizing sequence (u,,) for Problem (2.33) which is bounded in
BD(£2,) and div u,, is bounded in L*(£2,). Then we may extract from (,,) a sub-
sequence, likewise denoted by (u,,), such that

#,—u in L"V7Y(Qy),
$(e” () = $(®W)  in M'(2),

div u,, — div u in L2(£,) tightly on Q
and
um1p1_>u | 1—'1 in LI(FI).
Remark 2.2. The Theorem 2.2 improves Theorem 2.1 mainly in that u,, tends to

u in L'(1",), because weak convergence in BD(£2,) does not generally imply con-
vergence of the trace on the boundary.

Let us now give an important consequence of Theorem 2.5. Consider the
problem

_inf {fqb(s(z}))—l [fu—4 fF-u} (2.42)
ueBD(Qy) 2 o I

divueL2(£,)

u=u 0

and define the real numbers

i= sup {4}

30,00ek D, divoeLN
on=F/I'
and
A= sup{-4}

Jo0,0PekD, divocLN
on=F/I"

It is obvious that 2 < i, —Ai = —A. It may be easily seen that the strict inequality

i<i implies that there are 6 > 0 and o€ LY (.Q ) such that divee LY

K
1+ 6
and ¢ - n = iF/Fl. We then obtain

Corollary 2.3. Assume that 0 < 1= i éi (respectively —é <—A=Z1x0)
and that there is a minimizing sequence (u,,) for Problem (2.42) that is bounded in

L If F-n€HYIM, it suffices to suppose that (o - n), = F,.
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BD(82,). Then for a subsequence, likewise denoted by (u,), we have
u,—>u in BD(Q,) weakly,
#(P(@,)) — $(eP(w))  tightly on Q,
diva,, - divu in L*(Q,),
Upp, >t | [y

and u/2 is a solution of Problem (2.42).

Remark 2.3. When A€ ]—4, 1[, it is shown in [17] that every minimizing sequence
of (2.42) is bounded in BD(.QO), and as in Remark 2.2 we can give a simpler proof
of Corollary (2.3).

Proof of Theorem 2.5. Let 1> 1 be such that = = A¢ satisfies 2 ¢ KP.
Let (u,) be a minimizing sequence which converges weakly to u in BV(2,). As
before we have

[ #(ew) — [ e@w):v<lim f B(e@t,y)) — f ew,): .

Q2ur, o2y (21 &/ U,
Thus if o is the solution of the dual problem (2.37), we get by Theorem 2.5
d(e(@t,,)) — &(y,) : 0 —> —¢*(0) = P(e(w)) — e(w): 6 on 2V I,.

Therefore

[ @e@) — &(w): 7)

QU
é ll_ f 8(1}”‘) : (G - T) + f (d)(e(ﬁm)) - s(um) : G):
aur, Qur,
which implies
[Fu<lim | Fu,.
I Fa

The reversed inequality is satisfied without using the assumption on o, so we get

f Fy= llm f Fu,, and hence lim [ ¢(e(@,)) = [ ¢(e@). By applying
20T, QUr,

Theorem 1 2 m Part I, we conclude, in addition, that w, , —u|I'y. []

Let us now see how the conclusions in Part I may be applied to limit analysis
in plasticity.
We begin by recalling the relaxed form of the problem for perfect plasticity:

”‘i‘l,’,l‘lifm { Qf $o(eP(0)) + F{ ¢oo(<gD(_u))}, (2.43)
dive=0,0n=0{1",

which may also be written in the form

inf {Dl I ¢w<eD(a)>}. (2.44)

- Lv=1
vEBD(2,)
v=0/2
divo=0
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The dual problem of (2.37) is

sup {4} = 2. (2.44)
Ba,aD GKD

dive+4f=0{R
on=F[I

We recall that i is defined as

A= sup{}.
Bo',aDeKD
divoeLN
{o'n)=AF

The expected result is the following

Theorem 2.6. Let us suppose that A < 2. Then Problem (2.43) has a solution u
in BD() with div u€ L*(2). More precisely, if (u,,) is a minimizing sequence for
Problem (2.43) we may extract from it a subsequence (u,) such that

4, —>u in BD(R,) weakly,
2(eP(@,)) — 2(P(w))  tightly on 2,
and consequently w,,—u in L\(I}), Lu=1 and u,—>u in LNVN"1(Q,).

Proof. The proof is similar to the proofs of Theorems 2.3 and 2.5. If (,)
is a minimizing sequence for Problem (2.42), £°(t,,) is bounded in M'(2), and
since divu, = 0, we may extract from #%,, a subsequence, also denoted by (@,,),
such that

u, —u in BD(2,) weakly.

We have divu =0 and if ¢ is a solution of the dual problem we obtain, as in
the proof of Theorem 2.5,

(@) = @) :5 on QU T.

Then if u =0, u/Lu is a solution for Problem (2.43). We may in fact show,
as in the proof of Theorem 2.3, that Lu,, — Lu and finally obtain the expected
conclusion. []

2.3. Application to the theory of elastic-perfectly plastic plates
Let us consider a plate which occupies a bounded domain 2 of R? (0@ is

supposed to be C2). We assume for simplicity that this plate is subjected to null
force and moment on the boundary, and to a surface load of the form

f=g+2md
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where u; € I'(R)!, é; is the Dirac measure on (x;) and g€ L*(£2), the x;’s having
only a finite number of cluster points on every compact subset of £2. In consequence
of the study made in [6], the variational problem for elastic-perfectly plastic plates
may be written in the form

ue}‘}%fm {Qf wW(VVu) — Qf fu} (2.45)
where y is the conjugate of yp*:
. [FAM:M if Mc K
v = { +oo if MK,
K is a bounded convex set of K which contains O in its interior and A4 is a positive

definite operator on E.
It is shown in [6] that the dual problem of (2.45) is simply

sup :— f w*(M)}. (2.46)
V' VM+g=0 in Q Q
b(M)=0/T MecK

bo(M)=0/I"

Moreover, when M€ L¥(£2, E), V-V +- M(£2) and u belongs to HB(£2), we de-
fined in [6] the measure VVu: M on 2 and proved

Proposition 2.3. i) Let VVu: M be the distribution defined as
[VWVu:Mp = [fuV-V-Mp—2 [Vu@Ve): M — [u(VVg): M,
Q2 2 0 2

Jor every @ in D(82). Then VVu: M may be extended as a bounded measure on 2,
such that
IVVu: M| < |VVu| |M|.

ii) Green’s formula holds in the following form:
ou op’
[@VuiMyy = [uT V- Mp+ [.00 [op+ust| = [500u,
Q Q r on on r
for every ¢ in €(Q).

We now establish the existence of a minimizer for Problem 2.45.

Theorem 2.7. Assume that {f,p> =0 for all p in P2, and suppose that
there is aminimizing sequence (u,,) for Problem (2.45) which is bounded in HB(2)/%,.
Then there is a subsequence, likewise denoted by (u,,), and a sequence (p,,) in 2,
such that

Uy — Pp,—>u  in HB() weakly,
w(VVu,) = 9(VVu)  vaguely on 2\ VU {x;}.
L I'(R) denotes the class of absolutely convergent series.

2 2, denotes the space of the affine functions on @, or,equivalently, 2, = {T€2(2, E)
VVT = 0}.
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Moreover u,, — p,, is pointwise convergent tou on 2\ \ J {x;} and u is a solution

Sor Problem (2.40).

H

Proof. Let us note first that by virtue of the generalized Green’s formula in
Proposition 2.3, we may write

JVvuM = [fu+ bel(M)z—: — [bM)yu = [fu,

for M in &,4 and u in HB(£2). Therefore, Problem (2.45) may be written in the
form

[v(VVu) — [VVu: M.
g g

Now let (u,,) be a minimizing sequence for Problem (2.45), which is bounded
in HB(£2). We may extract from it a subsequence, again denoted by (»,,), and take
P €2 such that

U, — Pm—>u in WH(Q) (strongly),
VVu, —YVu in MY(Q, E) vaguely,

(c¢f. [7], [6]). We fix & > 0. Then we select a positive number é and we denote by
£2; the open set

Qs = {x€RY, d(x, ) < 8}.

We construct g in 2(2y), ¢s=1 on I, 0 < g; <1, and we set g, = 1 — ¢,.
We choose 6 > 0 so small that

f |VVu| <e, 247
Qg

fg p* (M) <e (2.48)
25N

where Mc L™(Q,K), Mc &,4. We denote by J; the finite subset of I, J; =
{jeI|x; is acluster point in 2\ ,}. Since [ [VVu|=0 Vjcl, we may

{x;
choose 8, > 0 so that
|VVu|<e and f pHM) < e. (2.49)
|\ B(x;,61) Y B(x},91)
jelg Jjeds

On the other hand there is an N¢& N such that
X, €\J B(x;, 6 p)V 25, n>N (2.50)

jeJ
and we may choose 8, such that

f |VVu|<e, and f p*(M) < e. (2.51)

N
\/ B(xj;dz) .U B(Xj,"z)
j=1 j=1
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Let now h; be € with compact supportin \ / B(x;, 6;) \/J B(x;,6,), h; =1

jeTs JelL,N]

on (\j B(x;, 6, ,2)) U ( \/ B(x;, 62,2)) , 0 < hy< 1. We may write

JjeT s Jel1,N]

[y(VWVu) — [VVu:M = [(p(VVu) — (VVu: M)) (ps + gshs)

+ [ WOV — (VVu: M) gyl — hy).

By lower semi-continuity,
fw(VVu) 8s(1 — hs) = lim fw(VVum) gs(1 — hy),
02 2

and since 1 — A; = 0 onevery x;€ Supp’ gs;, Green’s formula in Proposition 2.3
implies that

f(VVﬂm : M) g,;(l _— ha) — f (VVfl . M) g&(l —_ h(y).

o Q2

We now focus our attention on the term (p(VVu) — (VVu: M) (gshs + @s).
Using (2.47), (2.49) and (2.51) we have
f('ep(VVu) — (VVu: M) (ps + gshs)
Q
< f w(VVu) + | M|, f [VVu|

supp’p\Usupplhs supp’ps\Usupplhy

<c f [VVu|

supp’pg\supp’hs

§cl[ f]VVuH— f [VVu| + f |VVu|]
4 .\/ X;,01 N
Jjelg v B(xj,d,)
jeJs
< 3¢,s.
By recalling the previous inequalities, we get

J @OV — TV M) = 3ce + J VY — (V7u: M) g1 — )
< 3+ lim [ (9(VVu,) — (T, 2 1) 1 — )
< 3eie + lim [ (WTVuy) — (VWi : M)
+ [ 9D (s + gk
< lim [ (Vi) — (T2 M) - Bege
+ f (w*(M))
N

Qg| YV B(x;6)) U B(x,67)
6[]'6],, =
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<lim [9(VVu,) — (VVu,: M)+ (e, + s
Q

(by (2.48), (2.49) and (2.51))
=inf P+ (3c; + De.

Since ¢ is arbitrary, we deduce that u is a solution of Problem (2.45). The inequality
w(VVu) — VVu: M = —yp*(M), which holds for any M€ KN &, becomes

an equality when M = M, namely a solution for the dual problem (2.46).
Since [ (9(VVu,) — VVu,: M) converges to — [4*(M), by using the
Q2 Q2

inequality w(VVu,) — VVu,: M = —p*(M) on £ we obtain
W(VVu,) — VWV, : M — —yp*(M) =p(VVu) — VVu: M (tightly on Q).

Since VVu,,: M — VVu: M vaguely on 2\ \/ {x;}, we conclude, in addition,
that p(VVu,) — w(VVu) vaguely on Q\ V] {x:} Theorem 1.3 then asserts that
(u,,) is pointwise convergent to u on 2\ l\_/ {x:}-

We now give the analogues of Theoremls 2.2 and 2.5. We begin by defining
the real numbers 4 and 7 by

7= sup {4}, (2.52)
IMeL®(Q,K)
V- V-M=Aifg+ E widg

by(M)=0/T, bul(M)=0/T

A= sup {1} (2.53)
IMeL®(2,K)
V~V-M—ﬁ.zm6,~eu(g)
BUMI=0/T, bo(M)=0/T
and consider the problem
ueég(fg) (Qf p(VVu) — 2 [Qf gu + ; ﬂiai]) . (2.54)

Theorem 2.8. Assume that % <A and that there is a minimizing sequence
(u,,) for (2.54) which is bounded in HB. Then we may extract from it a subsequence
such that

u,—>u in HB weakly
and

u, is pointwise convergent to u in 2.
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Proof. Taking A’ ¢ [Z,i[, and M in L®(2, K)such that V-V - M — 1" Xy, 6,

€ LY(£2), we have, following the proof of Theorem 2.1,
f (p(VVu) — VVu: M) < lim f (w(VVu,) — (VVu, : M)
Q Q

=1lim [(®(VVu,) — (VVu,: M) +lim [(VVu,: (M — M)

Q Q2
= [(@(VVu) — (VVu: M)+ lim [VVu,: (M — M).
Q2 Q
This implies that lim f VV(u— u,): (ﬂ — M) = 0. The reverse inequality is
2

true without using 4 < 2 and may be obtained as follows:

[VVu: M= [p(VVu) + [p*(M)
Q Q Q

<lim [(®(VVu,) + w*(M))

I

lim [ (VVu,: M).
Q2

Consequently, lim f VV(u — u,): M <0, so 1imf VV(u — u,): M = 0. By
using Green’s formula and M€ ¥,4, we get

lim 37 w,(u — u,,) (x;) = 0.
moy
We have thus obtained

im [9(VVu,)=lim [VVu,: M+ [9(VVu) — [VVu: M = [V,
2 Q 2 Q 2

which implies that (y(VVu,)) converges tightly to ¥(VVu) and that (u,,) is point-
wise convergent to u in £2 (by Corollary 1.1). []

Remark 2.5. By Proposition 1.2 we conclude that y,(u,) converges to yo(u) in
yo(W>h), and that y,(u,,) converges to y,(u) in LX(I).

Remark 2.6. We could have treated the more general case where the plate is sub-
jected to boundary conditions

U = Uyrour,

u

=u
on 1T

by(M)= D'/I, U I,
bo(M) = D°[ I3,
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with f being as before. The proof is then a combination of the arguments used in
the proof of Theorem (4.2) in [6] and of Theorem 2.8 here (Sections 2.1 and 2.2).

We now consider the limit analysis problem for plates. We begin by recalling
the relaxed limit analysis problem for plates:

inf { Qf woo(VVu):. (2.55)

)=
ucHB or HB/F!

The study made in [6] showed that
inf (2.55) = 4.
We now establish existence of a solution.

Theorem 2.9. Assume that A < 1. Then a solution u of Problem (2.55) exists.
Moreover every minimizing sequence converges pointwise to u.

Proof of Theorem 2.9, Let us take a minimizing sequence (u,,) for Problem (2.55);
(u,,) is bounded in HB/p so there are a (p,,) in PF and a subsequence, also de-
noted by (u,,), such that

U, — p,—>u in HB weakly.

We may take Lu, = 1. Let us now consider M such that AM € K, for some
A>1, and V-V-M —Xyu;8,€¢ L'. We have

J¥e(VVu) — [VVu:AM < lim [ ve(VViy) — [VVu,: AM
2 Q Q Q2
=1im [p(VVu,) — [ VVu,: M+ [VVu,: (M —2AM)
Q2 (73 Q
= [9(VVi) — [VVu: M+ lim [VVu,: (M —2M),
Q Q 2

where M is a solution for the dual problem (2.52). Following the proof of Theo-
rem 2.8, we get p.(VVu) = VVu:M and then
[VVu: (M — AM) < lim [ VVu,,: (M — AM).

The opposite inequality holds without the assumption A< 1 oni, as may be seen
by

[VVu: M= [9(VVu) < lim [ »(VVu,) = lim [VVu,: M.
g g g g

By Green’s formula in Proposition 2.3, these inequalities imply that
Z M u(xi) = ll_I__Il 2 lutum(xi)'

We thus obtain Ly = lim Lu,, = 1 and that [ 9(VVu,)—> [ w(VVu).
Q [

This implies, by virtue of Corollary 1.1, that u,(x) — u(x), for every x in L.
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We conclude with a brief discussion of the case 1 = A. For more details, the
reader may consult my thesis [26]. In [19] SUQUET proposed another form of a
relaxed problem in limit analysis. For definiteness, we state it here for the case of
antiplane shear in plasticity:

- _ g ry + - —
ue]:;l{/f;:J) {szpoo(Vu)—i— r{¢m( un) + 4 [ |F||u u |} (2.56)
uteLW(Ty)
J‘le— J'Fu*‘;l
9] I,
This is a convenient relaxed form for Problem (2.28), since, as we showed in
[26], Chapter III, inf (2.28) = inf (2.56) and (2.56) admits a solution (u, u*).

By contrast, as shown in [26] by means of a counterexample, Problem (2.28) does
not generally have a solution when 3= Furthermore, when (2.28) does not
have a minimizer, the only solutions of (2.56) are of the form (0, xF) where « ¢

L'(I')and [ xF? = 1. The proof of these results and their analogues in plasticity
and plate theory are given in [26].
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