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Introduction 

This article presents certain results on variat ional  problems that  arise in differ- 
ent  areas o f  mechanics  and, especially, in plasticity. The c o m m o n  mathemat ical  
feature o f  these problems is that  they involve energies that  are coercive on non-  
reflexive spaces o f  the type L ~, so the solutions, when they exist, lie in generalized 
spaces such as 

BV(32) = (u E La(32), Vu E M1(/2, RN)), 

BD(32) = {u E L1(32), co(u) = �89 (u, d + uj,,) E M~(t2, E)}, 

o r  

HB(32) = {uE LI(.Q), u u = (VVu)uE M1(/2, R)}, 

where 32 is a bounded  open set in R N, E is the space o f  symmetric tensors o f  order  
two on R N, and Ma(Q,  X) denotes the space o f  bounded  measures on 32 with 
values in Y. The use o f  these spaces settles in a satisfactory way the problem o f  
existence o f  solutions in the sense o f  the calculus of  variations. However ,  it leaves 
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open questions that are important in the applications to mechanics. To fix ideas, 
let us consider the problem of limit analysis for antiplane shear in plasticity, name- 
ly 

/ f  + f Lu inf 
u~BV(O) /lo 

~fu+ I Fu=l 

where f E  LN(~Q) is the body force and FC L~176 is the traction on the bound- 
ary. The methods of  the calculus of  variations guarantee that a minimizing se- 
quence contains a subsequence (un) which converges, weakly in BV(12), to a mini- 
mizer u E BV(O). However, this does not  allow us to conclude that u satisfies 
the work condition Lu = 1 since we do not know, for instance, that unlr--~ u]F 
in any sense. 

Questions of  this type have motivated the first part of this article which seeks 
to establish sufficient conditions for compactness of  the known injections BV(S2) 

LN/N--I(Q), BD ~-~ LN/N--I(~2), yo(BV) ~ LI(I'), yo(BD) ~, LI( / ' ) ,  HB ~-~ C(O). 
These injections, which are of  course continuous in the strong topologies 

may be continuous in other, intermediate, topologies which are induced by con- 
vex functions of  a measure defined by R. T~MAM and the author in [8]. To be pre- 
cise, when ~p is a convex lower semi-continuous proper and non-negative function 
which is linear at infinity, we may define on Xs = (u E LI(~), Su E MI(~)} the 
distance 

where S is one of the operators V, e or VV and w(Su) is the bounded measure 
defined in [8]. The central result in Part I is that if (Un) is a sequence converging 
to u in the metric dr.s then, if S : V or e, u~ tends to uinLNm-l(12), and u~l r tends 
to ulr in L~(/-'); if S ---- ~7~7, u~ is pointwise convergent to u. 

These results are of  general mathematical interest, independent of the intended 
applications, and so Part I of  the paper may be read independently of  the rest. 

The second part of the paper deals with applications of the above results. 
In the first place we obtain a solution of  the problem of relaxed limit analysis in 
plasticity, under weak assumptions. Furthermore, we provide improvements to 
the existence theory in plasticity, by KOHN & T~MAM [12]. In particular, we show 
that the minimizing sequence (u~) for the energy actually converges in L N*, thus 
answering a question raised by STRANG & T~MAM [21]. Moreover, we show that 
the trace of (u~) on the part /'1 of  the boundary on which traction is prescribed 
tends, in L t, to the trace of  the limit. This solves a problem posed by SUQUET in 
his thesis [19] and it also provides a possible explanation to the observation that 
the displacement gradient does not jump across the interface formed by the clamped 
and the free part of  the boundary of  the body. 

Part I. Compactness in BV, BD and HB Spaces 

As I mentioned in the general introduction, my aim in this chapter is to de- 
scribe a family of convenient topologies on the spaces BV, BD, HB, which make 
the following injections BD, BV ~ LNm-I(O), yo(BV, BD) ~ LI(_P), HB ~ cg(~) 
continuous. 



Compactness Theorems and Plasticity 125 

1.1. Survey of known properties and notations 

Let Y be a real Euclidean finite dimensional space, ~Q be an open bounded set 
of  R N, N > 2, with bounda ry / ' .  Suppose that ~p is a convexlower semi-continuous 

proper function from Y into R such that 

W(0) = 0, V ~ 0 (1.1) 

which is linear at infinity, i.e. there are positive constants Co, cl with 

(Co - 1) ~ ~p(~) =< c1([~[ + 1) (1.2) 

for all ~ in Y. It is shown in [8] that (1.2) is equivalent to 

K = dom ~v* is bounded and contains 0 in its interior (1.3) 

where v/* denotes the conjugate of  ~, 

~ * ( 0  = sup ( ~ .  ~ - v ( ~ ) )  
~ Y  

(see for instance J. J. MOREAU [15], R. T. ROCKAFELLAR [17] or I. EKELAND & 
R. T~MAM [9]). We define the asymptotic function 

g,(t~:) 
~o~o(~) = lim (1.4) 

t-+ + oo t 

which coincides with the conjugate of the indicator function of  K: 

~poo(~) = sup ~ : ~7. (1.5) 
~ K  

It is shown in [8] that for # in the space MI(Y2, Y) of bounded measures with values 
in Y we may define a bounded measure W~) which coincides with ~p o g when 
# = g dx in an ordinary sense. We recall a proposition established in [8]. 

Lemma 1.1. Let (txj) be a sequence in M1( ~2, Y) which converges weakly (vaguely) 
to a measure # and let ~ be a convex function as above; then for a subsequence still 
denoted (#j), ~p(~uj) converges weakly to a measure v in Ml(f2)  and 

~v(~) :< v. (1.9) 

Another interesting fact is the following approximation (c f  [8]). 

Lemma 1.2. For every i ~ in Ml(f2,  Y), there is a sequence o f  functions (uj) in 
cg~(T2, Y) such that for every convex function ~o satisfying (1.1) and (1.2): 

~o(uj) -+ ~(t ~) tightly on Q,  
i.e. 

f w(u) 9 -~ f w@) ~ for every ~ in (g(~). 

Remark 1.1. This result easily enables us to extend the inequality (1.2) to bounded 
measures on z9. In other words, for each # in M*(~9, Y), we have 

c0(]#l --  1) =< ~o(#) ~ c,([/z [ + 1). (1.10) 
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We now recall two lemmas  on Concentration Compactness (cf. P.-L. LIONS 
[13]). 

F o r  d ~ 1, we define the space 

VaB(~Q) = {u E L ' ( f~) ,  Vau E M' ( f~ ,  Rm)}. (1.11) 

N 
For  d ~ N ,  let us define N * - - - -  I t  is known tha t  

N - - d "  

VdB(f2) ~ Lq(f2), u q <= N * ,  (l .12) 

VdB(.Q) ~+ Lq(~Q), V q < N* 1 (l .13) 

A par t icular  case o f  L e m m a  1.1 in P.-L. LIONS [13] is 

L e m m a  1.3. Let  (u,) be a bounded sequence in VaB(f2), converging weakly to 
some u and such that I Vaun I converges weakly to/~ and l Un I N* converges tightly to 
v where #,  r are bounded non-negative measures on f2. Then there is a positive con- 
stant c, a sequence (xj) o f  distinct points in f2 and a sequence (vi) o f  non-negative 
numbers such that 

= lul N• + y ,  vj 6:r (1.14) 
jeJ 

# :> ]VmU[ ~- C Z J'J"'/N* 6x i (1.15) 
yeN 

where Ox~ denotes the Dirae measure at xj. 

We need another  l emma which is also a part icular  case of  a result in [13]. 

L e m m a  1.4. Let  i z, v be two bounded non-negative measures on R N satisfying 
fo r  some constant Co > 0 

I IN* < Co (f  (1.16) 

f o r  all qJ in ~( f2) .  Then there are a positive constant Co, a sequence (xj) o f  distinct 
points in f2 and a sequence rj o f  non-negative numbers such that 

= Z~j  Oxj, t z ~ Co 1Z~)  IN* Oxj. (1.17) 

Given a differential opera to r  S with constant  or  cgo~ coefficients, we define 

X = [u E La(K2, RN), Su E M~(f2, E)) 

where E denotes the space of  symmetr ic  tensors of  order  two in R N. X is a Banach 
space under  the natura l  no rm 

lUlx = Iu]~ 4 - I S u l r  (l .19) 

x X ,~- Y means that the injection from X into Y is compact. 
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where I I i  denotes the L 1 norm and I [ r  denotes the total variation. We may also 
endow X with its weak topology which we define by the following family of  semi- 
distances �9 

e(u, v, 9)  = I u --  vi i  + If (Su - Sv) 91 (1.20) 

where 9 belongs to  Co(Q). Thus u= tends to u weakly in Y if 

Um-+U in LI (O) ,  

Sum --~ Su in MI(O)  vaguely. 

1.2. Compactness when S is the gradient or the strain tensor operator 

In this section we discuss conjectures on the space X introduced in Section I. 1 
for the case when S is either the gradient ~7 a with d < N or the strain tensor opera- 
tor  e defined by 

e'AT) --  �89 LTx~ + ~Tx~J " 

We now give the first result of  this section. 

Theorem 1.1. Le t  X b e  the space (1.18) when S is either Va for  d < N or S = ~. 
N N 

We let N * - - - -  i f  S = ~ 7  d, N * - - - -  i f  S = e .  Assume Vo is a proper 
N - - d  N - - 1  

lower semi-continuous convex function that satisfies (1.1), (1.2). Then f rom any 
bounded sequence (Urn) in X we may  extract a subsequence, again denoted by (Urn), 
such that 

u m ---> u in Lq(O), u q < N* 

[Um] N* ---> ~ (1.21) 

~o( Su.) -+ # 

where v and I* are two bounded measures on O such that there exist a positive con- 
stant Co, a sequence (xj) o f  distinct points in O and a sequence (vj) o f  nonnegative 
numbers such that 

= l u I N + X 
j ~J  

(1.22) 
# => w(Su) + Co ~ ~,)~/N*~xj. 

.i~J 

Proof of Theorem 1.1. This proof  borrows ideas f rom P. L. LIONS. In either 
case, X '-+ L N* and X ~. L q, q -< N*;  then if Um is bounded in X, using (1.9), 

we easily obtain (1.21) for a subsequence. I t  remains to prove (1.22). Using 
Lemma 1.3 we obtain 

= [u[ N• + S ~ j  aj, 

!Su l > ISul + s #  %. 
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Now using Lemma 1.1, we find 

and using inequality (1.9), 

We thus obtain 

F. DEMENGEL 

# ~ w(Su) 

r(sum) >= co(! S"m[ - 1). 

y ~= Co(y* -- 1). 

Now let us assume S = V a. Since w(Su) is absolutely continuous with respect 
to t Su t, to complete the proof  it suffices to show that I suI and Dirac masses are 
orthogonal for N ~ 2: indeed let Xo E O (we may suppose Xo = 0) and let 
us show that  lim f I Su l = O .  

r~O B(0,r ) 
We introduce the notation B+(O, r) ~ {(x', XN), XN > O} ~ B(O, r), B-(O, r) 

= {(x', XN), XN < 0} /% B(0, r), /" = (x', 0) A B(0, r), where B(0, r) denotes the 
ball of  center 0 and radius r. We have 

[~N-,U] 
( S u ) ] x N =  O =  

[OXN J XN=O 

and [ 8 x - ' ~ J  belongs to LI(Xx = 0). Then for given 6 > 0 we may choose r > 0 

such that 

/ I  f~N l'll 
t~x~ U idx'l < ~. 

Moreover,  Su is a bounded measure on D A {XN > 0} and on -(2/~ {XN < 0}. 
Thus we may choose r > 0 such that 

f < f lsul = f I s . j  + f I s . j  + . 
B(O,r) B+(O,r) B-(O,r) B(O r)fN{x N O} 

which shows indeed that I Sul and the Dirac masses are orthogonal for N => 2. 
We now turn to the case S ---- e. Using a result of  BR~ZlS & LmB [4] and 

taking Vm ---- Um -- U, we see that 

- f IVml  N* + f lum]N'-~  f l u l  N• 

and we wish to show first that 

[Vm I N• --> S v j  axy = 2. 

To that end we will show that for a subsequence we have 

I Urn I N* -->" 2, ] E(Um) I -->" ~,', 

where (2, Y) are two bounded measures which satisfy the assumptions of  Lemma 1.4. 
Let 9~ be in ~(.Q), ~ ~ 0. We have by Proposition 1.3 of  R. T~MAM [24], for 

instance, 

(fl Vm~9 [)l/N* ~ C f I,(vm~) I. 
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For  some positive constant c, by passing to the limit and using 
strongly, we get 

( f l ~ t  N" da) ';N* =< c(fl~ I,,) + 0 

which implies 

and then 

,, = ~ vj ~ ,  for some x i and ~9 . $  
] 
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u,. -+ u in L ~ 

or every x~, i E J, and 

Since u belongs to L N*, this last expression tends to zero when ~ ~ 0. We finally 
obtain 

/* > 1 vN* ~x,. 
= C t 

1 
1~ >= - -  S v~* ~xi" c 

Now, as with V d, we see that for N => 2, {f) ],(u) I = 0 and using 

vp(e(u)) ~ # = lirn ~o(e(um)), 

' N  
N , i  I/N* 1 N X fuo%<=Cj,,o, iuli V vQ 

\ l/N* 

= f lul N') IVeI~N. 
B(X i,•) 

= lul N ' +  Z ~ % .  
i 

Now for ~ in ~(f2) we have 

(f[ N, f~lUm~[ um~[ )=<c 

<= c(fe J u,"q~l + f lu , .  | v~fl) 

=< cl f ~(*(Um)) ~ + C2 f9~ + f lure | V~] 
and then passing to the limit, 

( f i l l  N" d~,) <= c, fq~ d~, + c2 (flu ova0] § f~) .  

Now l e t ~ ) b e i n  9 ( ] - - l , §  0 =  1 on a neighborhood of 0, and f l > 0 ;  

let ~ i (x ) - - - -~ (~ -~ -2 ) .  We have 

lim f l e, I N* dr = v,, lim ( ej - 0 
rt---~ 0 r / -+0 a 

and 
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we obtain 

__> ~(e lul) + ~ - - ~ "  ~x, 
C 

which completes the proof  of  Theorem 1.1. [ ]  

Theorem 1.2. I f  (urn) is bounded in X and ~o(Sum) tends to a measure # which 
N* has no Dirac masses, then Um --~ U in Lloc(Y2). If, moreover, the convergence of  

y(Sum) towards I ~ is tight, then Um ~ U in LN*(g2). For S = e, or U, we have in 
addition, yoU~ ~ yoU in LI(I"). 

Proof. Let us suppose that vd(Sun) tends to a measure/z which has no atoms. 
Then by (1.21) vj = 0 for all j E  Ig and lunl N" converges vaguely to Iu l" ' .  
We note that for all open Y2' relatively compact  in [2, 

f lulN*--> f lul N'. 
.qt Ot 

Indeed, we have by lower semi-continuity of  the total variation on open sets 

f luJ"" <= li._~_m f lun I"', 
.q' g2' 

and by upper semi-continuity on compact sets 

lim f fun] N* = lim f lug[N* =< j [u]N*. 

These two inequalities imply 

lim f lu~] N* = f Jut N*. 

This property and the weak* convergence in L N* are sufficient to ensure the 
strong convergence in LN*(gT). Let us now suppose that y(Sum) tends tightly to 
~p(Su) on Y2, and show that Um ---~ U in LN*(f2). Suppose for a while that this is 
true when S = V  or e. Then, if d >  1 and ~Tdum is bounded in MI(~2, E), 
V d-1 Urn is bounded in BV. The result for d = 1 implies that U d - i u  m tends 
to V d 1 u in L N/N-l, then Um ---~ U in W d-1'N/N-1, and finally Urn---> U in L N/N-d. 
Assume now that S = V or e. Use of Lemma A.4 in the appendix of [26], Part  4, 
provides for every e :> 0 given a compact  set K in .q such that 

f w(Su~) < e I Su~l< (e) 
t2\K .O ~ 1  

for  all n E N .  For  given d t > 0  we define the open set 

and put / 'a-----~$26- ~ .  We may choose 8 >  0 such that O a ( - Q \ K ,  
f ~p(Su) < e and f lul N* < e. By Fubini 's theorem, um tends to u in LI(F~) 

for almost every 8, so there exists NE N such that for m > N, f lure -- u I < e. 
Fd 
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We now define Urn t o  be equal to Um in g2n and to u in $2 \ g2o. /~m belongs to X(O) 
and 

Sff l  m = S u m / i f 2  ~ - ~  ( u m  - -  u ) f f  81,,3 if S = V, 

= Sum/.(2~ + C~(u m -- u) 8& if S = e 

where tSr6 denotes the superficial ( N -  1)-dimensional measure on /'a, and 

oa'(p) is the tensor with components J'o(P) = �89 (piny + pjni). This leads to the 
estimate 

f S(hm- U) <= f lS(um -- u)[ + f lUm -- U[ 
12 O ~3 1~6 

<= f lSUml + fls.l+ f lum -- U[ ~ 3e, 
t2 6 O 6 r o 

and thus 
f lu~--ulN*~ f[~m--Ul N* 

All these inequalities imply that f 

4o)  f [~m -- u I 
t2 

c(f2) �9 3e. 

[Um [U*~ c(.Q')e and using Lemma (A.4) 

of  [261 Part 4, we finally conclude that lure I N* converges tightly to l u l N*. 
We wish now to prove that if S = e or V and Um tends to u in Ll(f2), ~p(Sum) 

-+ ~p(Su) tightly on /2, then 

um -+ u in Ll(~f2). 1 

Let us remark to begin with that according to Lemma A.4 in the appendix of 
[26], Part 4, for every ~ > 0 there is a compact set K in f2 such that for every 
m E N, f ~p(Sum) < ~1. This implies by (1.2) that 

D\K 

f [Sum [ < Co~ + meas (~2 \ K). (1.22) 
O~K 

For  t~ > 0 we define once more the open set .Q~ = {x E f2, d(x, 8f2) < t~} and 
set F 6 =  t~f2a\~f2. We may choose ~ > 0  such that ~ 2 ~ ( . Q \ K  and 
f I Su] < ~. By Fubini's theorem, Um ---~ U in Ll(f 'o),  for almost every ~, so 

f2t~ 
we may choose M E N ,  such that for m ~ M  

f lure - -  U] < W, (1.24) 

f lure -- u I <  ~ (1.25) 

because Um converges to u in L~(~). We now recall the following lemma, proved 
in the appendix of [26]. 

i This property has been proved by R. T~MAM [221 for ~p = I" I. 
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L e m m a  A.1. There is a positive constant c such that f o r  every F E  L ~ ( 8 O )  (or 

F E  L~(~[2, RN)) there is a cr E L~176 RN), div tr E L~(z'2) (or tr E L ~ ( ~ ,  E), 

div tr E L~([2,  RN)) which satisfies o .  n = F (or ~ �9 n = F), and 

(I~r[~ + ldiv ,rloo) ~ c IFI~. (1.26) 

U m - -  U 
We apply the above lemma with F m - -  [U m - -  U ] "  

which satisfies o" m ~ n = F m and 

Let us then consider am 

]trm Ioo + Idiv ~rmlo~ ~ c. (1.27) 

We have by Green's formula on Q: 

f Fm" (U,n -- U) -- f (6 m " n) (u m --  u) 

= f S ( u  m - -  u )  : (~m -~- f (Urn - -  U) div a, 
D~ D~ 

and then using (1.28), for m ~ M, we deduce 

f l U m - - U ] ~ C  f ] U m - - U l - ] -  flSul+c flum-Ul<=2ce+2e 
F F~ f2r D 6 

by virtue of (1.24)-(1.27). [ ]  

1.3. Compactness when S ----- V N in R N 

We present here certain theorems on compactness in the space VNB(g2) 
(where N is the dimension of  ~).  The space V2B(S2) for N = 2 has been denoted 
by HB(~2) and has been studied in [7]. It is easy to show that the following results 
established in [7], when N = 2, are valid if N > 2, namely, 

VNB(~) ~ C(~) (1.28) 

and if ~.Q is sufficiently smooth (piecewise C N for instance), 

V N B ( f f 2 )  r C ( ~ ) .  (1.29) 

We may endow TNB(12) with a weak topology which can be defined by the 
countable family of  semi-distances 

e(un, u, tp) = [u, -- u ] + If VU(uo - u) ~l (1.30) 

where ~0 belongs to fro(f2). 
If  we endow the space of  continuous functions on ~ with the topology in- 

duced by pointwise convergence, the injection (VNB(.Q), e) ~ C(D) is not  com- 
pact, as it is shown by the following example: 

Let q0 E N(.Q), with q~ = 1 on a neighborhood of 0 E f2 and let ~% be defined 
a s  

f . ( x )  = ~(nx). 



Compactness Theorems and Plasticity 133 

It is easy to see that ~, is bounded in VNB(ff2). Indeed 

VN ~n(X) = nN(vNcfl) (nx)  

and then 

f lV~=[ (x)dx= f nN lV%[ (nx)dx = f lV~ol (x)dx. 
I~N 

This property and the convergence of  ~0 to 0 in LI(.Q) imply that ~, tends to 
zero in VNB(Ig) weakly. But ~0,(0)= ~ ( 0 ) =  1 shows that ~%(0)~ 0. 

For  VNB(12) equipped with the topology of the norm it is clear that the in- 
jection of  VNB(.Q) in C(aQ) is compact. A more useful topology introduced in [7], 
is the following: 

Let Io be a convex function which satisfies (1.1). We define the distance 

d~(u,, u~) = [u, - u2 [1 4- If ~t0(vN//1) - -  ~)(VNu2) I (1.31) 
and state 

Theorem 1.3. Le t  X = VNB(.Q), and let (Urn) be a bounded sequence in X. 
Then we can f ind  a subsequence, still denoted (urn), such that u m --> u in Lq(f2) 
V q < 4- oo and in VNB(O) weakly, where u belongs to VNB(.Q). Moreover there 
are a positive constant c, a sequence (xj) o f  distinct points in .(2. and a sequence v i 
o f  non-negative numbers such that 

bl m ~ bl 4- E ~jZj pointwise on O ,  (1.33) 
j~N 

~/)(vNl/m) -"~ 1,~ ~ ~0(VNu) 4- C E I~J[~Jxj" (1.34) 
J 

Corollary 1.1. I f  Um -+ U in HB(f2) weakly and i f  I VVum [ tends to a measure 
# which has no atom, then 

u,.(x)-+ u(x) v x ~ S~. 

Remark  1.2. Corollary 1.1 proves a conjecture of DE GIORGI [5]. 

Proof of Theorem 1.3. We may suppose that Um tends to u in VNB(O) weakly 
and that ~p(VNum) and ]VN(Um --  u) l converges vaguely to bounded measures/z 

and ~. We denote by v the function defined for every x in ~ by v(x) = lim (urn --  u) 

(x) = lim (vm(x)). "v is bounded and v equals zero almost everywhere with respect 
to the Lebesgue measure dx. 

Let xo be such that ]V(Xo)[ > 0. We define r  ( ~ _ _ 2 )  where r is as 

in the proof  of  Theorem 1.1 and e < d(xo, ~ ) .  Then 

](g.~) (Xo)] _<- c f ]vN(VmO) [ 
.0 

< e  ffV%,,I I~1 + E flc~vpvmVN-PqJ 
.c,i p<N I2 
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where e is some posit ive constant .  Fo r  p < N, VPv,,, -+ 0 in LI(f2)  and then  

] V(Xo) l = I(v0 (Xo) 1 < c f to l d~. 

Lett ing e tend to zero, we conclude tha t  fi{Xo) > O; thus the set o f  x such that  
f ( x ) ]  > 0 is at mos t  countable.  We may  write 

= sTj  l~xj~ 

where ~i = v(xj) ~ 0. By the procedure  carried th rough  for  _v = lira (Um - -  u), 
we obtain  

V : ~ _ j  l{yj} 

for  some ~j in R+, and yy in ~Q. Of  course we may  replace (xj) and (yj) by their 
union and  reindex in order  to have ~ = Z'~yl~xj}, v = Z'_~ i l~xj~. Let  us now 
note  tha t  

<F, + IvNu[ 

and a p p l y ,  to ~ i ,  ~)i(X) = ~) ( ~ - - - ~ )  �9 Let t ing e tend t o 0 w e  obtain  

sup (t;, I, 151) ~x, < c , ,  

because f [VNu[ Oi-+ 0 when e--> 0. (Indeed,  according to a theorem of 
[7], [VNu[ has no Dirac  masses for  N=> 2). 

T o  finish the p r o o f  of  Theorem 1.3, let (urn') be a subsequence of  (Urn) such 
tha t  

~I)(VNUm ,) ~ / lZ  

and let J be the subset  o f  N such tha t  /z((xj}] > 0 for  all .]E J. Fo r  x 4= x t the 
inequality,  above,  implies that  Um,(X) -- U(X) ~ O. NOW, by the diagonal  process,  
we m a y  extract  f rom (urn,) a subsequence denoted (Urn") such that  

for  all j E J .  

with 

(Urn,, - -  H) (Xi) --~ ~i ~ [Vi, ~)i], 

We thus obtain 

Urn,, ~ U ~- X ~i l{xi) 

~fl(gum,, ) --~ ~ ~ ~)(Su) -~ c ~ ]~'i [ (~x i �9 [ ]  

We now obtain  a sharper  result. 

Theorem 1.4. I f  (~m) is weakly convergent to ~ in VNB(f2), and if  l~m,l,2,....N[ l 
convergents vaguely to/~ such that 

/~(X C ~2~N Xi = y,.} = 0 for  all f in R N . 

Then (~,) converges uniformly to ~ on every compact subset of  f2. 

ek# 
1 ~,i,i:...i k denotes the partial derivative 

~Xi I OXi 2 . . .  OXik" 
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Proof. We assume that N = 2; the extension to the general case is straight- 
forward. By hypothesis [#[ {(xl, x2)} = 0 W (x~, Xz) = x E/2,  so by Theorem 1.3, 
(~:,) converges pointwise to ~: in/2.  To that end we show that (~:~) is equicontinuous 
and then use the Ascoli-Arzel~t theorem. Let x = (x,,  x2) be in /2 and ~ in 
~(/2),  ~ = 1 in a neighborhood of x. Noticing that [(~,)a2[ tends tightly to 
a measure which has no mass on lines parallel to the coordinate axes, we see that 
it suffices to prove the theorem for a sequence (~n) with fixed compact support in/2 
which converges tightly to a measure/z which has no mass on lines x~ = const. This 
implies that ~,.~2 is also tightly convergent to /z  on the open set:/2~ = ] - -  ~x~, x~[ 
• ]--  0% Xz[ /q /2  of  R N as well as on its complement/22- Consequently, using 
Lemma (A.4), for every given e > 0, we perceive that there are compact subsets 
K~ of/21 and K2 of /22 such that 

f 1#..,21 < ~, f I < ~. (1.36) 
O t \Kt "Q1 \K• 

Now let ~ be a positive number such that ~ < inf (d(Kt, ~/2~), d(K2, 8/22)) and 
let Y = ( Y ~ , Y 2 )  be such that ] x t - Y a l  < ~, Ix~-Y~I < ~. We define the 
sets 

B(xl ,  x2) = ]inf (xt, Xz), sup (xx, Xz)[•  

B(yl ,  Y2) = R • ] inf(yl ,  Y2), sup (Yl, Y2)[. 

By using (1.36) and the assumptions on ~, we obtain 

f 1~..,21 < 2e. 
( B(x , ,x 2)k.S Bty , ,ya))A 

Therefore, employing the explicit expression of  ~n(x, y) and ~:n(z, t) given in [7], 
we get 

f le.,,= I < 2e 
(B(x,y)W O(y,t))n t~ 

which implies that the sequence (~,) is equicontinuous. [ ]  

It is natural to ask whether the convergence is uniform on ~ ,  when 8/2 is 
sufficiently regular. The following theorem establishes uniform convergence in 

in a sufficiently general case. 

Definition. /2 has the square cone property i f  it can be covered with a finite 
collection {(0i), i E I} o f  open sets with the following property: for  each i there is 
an open cone C i o f  right angle and vertex 0 such that 

(x + C / ) / 5 0 i  C /2 ,  for  all x in /5 ~ A Oi. 
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Proposition 1.1. Let  us suppose /2 has the square cone property. Then i f  (~.) 
converges weakly to $ in VNB and t$.,12[ converges tightly to a measure t z which 
has no mass on lines parallels to the coordinate axes, then (~ )  converges uniformly 

to ~ in ~2. 

Proof. We assume once again that N = 2. To begin with, we note that the 
computation of $(x) in terms of $.12 given in [7] may be extended to the x's in 8~ 
when O has the square cone property: indeed suppose xE aD and let ( ~ ,  ~2) 
be an orthonormal basis of R 2 such that C is the cone 

C : (2el + ~e2, 2 ~ 0, ~ ~ 0} 

with ((x~, x2) -[- C) A B ( f2, where B is a bounded set centered at (x~, x2) = x. 
By choosing r in ~(B), ~ = 1 on (xl, x2), it is easy to show, following the proof 
of Theorem 3.3 of [7], that 

Yl  Y2 

~I(Y~, Y2) = f f (r (t, 2) dt d2 (1.38) 
- - o o  oo 

is continuous on B/q /2 and coincides with ~$ for almost every y = (Yl, Y2) 
in /2. 

The remainder of the proof is merely a straightforward modification of the 
arguments used in the proof of Theorem 2.4. [ ]  

Corollary 1.2. Le t  [2 verify (1.37) and assume that 1~e,,121 --~ 15,121 tightly on [2. 

Then Sn converges uniformly to $ on /2. 

Proof. We saw in [7] that if 

D = O 1 U O 2 ,  ~ I A ~ 2 = F ,  / 2 I A O 2 = 0  

where P is ( N -  1)-dimensional and C 2 and ~ is the unit normal pointing from 
/21 to /22, we have for ~: in HB(/2) 

VV~:/o = VV~/n, q- VV~/o, -~ ~8n a n /  

This implies that if F i s  a line x;----const, then ff = e j  for j ~ i  and 

(VV$)I r a(~x-~x ) - ~ -  e i | e, ~r 

hence t$,121/r ~ O. The assertion of the corollary now follows by Proposi- 
tion 1.1. [ ]  

We showed in [7] that when 8.Q is piecewise C 2, the trace of u E HB(/2) 
on 8/2, which is defined since u belongs to c6(~), is in fact contained in a much 
smaller space, denoted by yo(W2'l(/2)). We also defined the second trace map 71 
and showed that vI(wE'1(/2)) = L I ( F ) .  When (Urn) is weakly convergent to u 
in HB(.Q), it is not generally true that 7oUm ~ yoU in 7o(W2'1), nor that ylUm -+ 71U 
in LI(P).  The proposition below gives conditions sufficient that ~oU n ~-> yoU. 
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Proposition 1.2. L e t  us assume ~o(VVus) converges t ightly to # E M ~ ( O )  and 

u s --> u in HB(O) weakly .  Then u~ --> u in ~o(W 2'1) (strongly),  and 71un --> 71u 
in L ~ ( I ) .  

Proof.  Since ~p(VVu~) converges tightly, by Lemma A.4, we may choose for 
all ~ > 0, a positive number  t~ such that  if O~ = {x E O, d(x,  ~32) < t~}, then 

f IVVusl < e~ fv,(VVus) + e~ meas O8 ~ ce, (1.39) 
t2 d O 8 

for all n E N. We may impose, in addition, the assumption 

/IVVul<, 
"Qd 

~ u  ~u 
and if /~  = ~O~ - -  ~f2, we may suppose that  u~ ~ u in W2'I(Ps), and--~--~-~n 

in L I ( / ) .  Thus there is an N~ such that for all n > N, 

I 0 L1 "Jr'8) < [Un - -  U lw2,,(rs) < e, ~ (us - -  U) e. (1.40) 

Now recalling the definition of I n n  - -  ul~o(w~,', we let F n E yo(W2'l(O))*x and 
G~ E L ~ ( 1  -') be such that  

t I l us - u I~o(~2,b =< (Fs ,  us - u)  + ~,  F~  (us - u) ~'(~) ~ ( G . , u s - - u )  + ~  

(1.41) 
and 

[es[~o(W2,b. ~ 1, IGslo. ~ 1. 

Now we use Lemma A.2 in the Appendix of [26] to provide a sequence M s 
in L~(O,  E) 1, with V �9 VMs E L~176 such as to satisfy bo(Ms)  = Fnlr, b l (Mn) 
= Gnlr,, and [Mn [oo + [V.  V .  M~ [~ ~ c{[Fsl 7o(W2") * + ]G~ [Z~(r)} =< 2C. 

By the generalized Green's  formula (of [6]) we obtain 

<fro, u s - -  u> - -  ~n (u. - -  u) Gs - -  <bo(M.), Un - -  u>ro + <bl(Ms) us - -  u>r o 
F 

J J 
128 ~8 

1 We denote by )'o(W2'l) * the dual space ofTo(W 2,1) endowed with the induced topoi- 
ogy of W 23, i.e. lUlvo(W23) = inf IIv[Iw2,a. 

v=ulF 
2 For every M in L~(12, E), V �9 q �9 M E L~(s we defined in [6] bo(M) and b l (M)  

0 
as elements of Vo(W23) * •176176 They coincide with div (M.  n) -1- ~ s ( M -  n" t) and 

M" n �9 n when M is sufficiently regular, and are such that the following Green's formula 
holds: 

gu 
fVVu: M -- V .  V .  M u  = f b , ( M )  -if-fin -- (bo(M), u) ,  

for every u in W23(t2). 
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and then, using (1.39) --~ (1.41) and the convergence in L~(/2), we get for some N 
and for every n > N 

--~-ffn (Un -- u) -~- [Un -- U[vo(w2,,). ~ f (Un -- u) Fn 
LI(F) 

<= c ]VVu.l + f [VVul + c f lu. - ul + -ffn (U. - U) 
"Q,~ "QO LI(FO) 

+ II u. - UllwZ, l<r~)) :<  4ce 

which finishes the proof  of  Proposition 1.2. [ ]  

Part lI .  Applications 

2.1. Applications to the Calculus of Variations, 
Capillarity Theory and Antiplane Shear in Plasticity 

The theory of  minimal surfaces, capillarity and antiplane shear in plasticity 
lead to variational problems having the common form 

inf ( /{cb(Vv)--Lv})  (2.1) 
v=uo/ l'o 

where/2 is an open bounded set of R N, with a smooth boundary/~, F = To L/T1,  
-Po and -Pz are two open connected subsets of  -P1, Lv : f f v  + f Fv, fE  LN(~), 

-Q / ' i  

F6 L~(Px), Uo 6 HI/2(F), and ~b is a convex function on R N which satisfies (1.1) 
and (1.2). In [23] T~MAM showed that the dual problem of (2.1) is simply 

sup (--  f ~*(p) + f p .  nuol . (2.2) 
divp + f : 0  \ 1"2 r t l 
p'n : g / F l  

Moreover, inf(2.1) : sup (2.2). The existence of  a minimizer for (2.1) has been 
studied in [23], [21]. It is natural to consider the space BV(-Q)= (uELa($2), 
VuE Mz(O, RN)}, and to extend Problem (2.1) to a relaxed problem defined by 

( f  4>(Vu)+ f qbo~((Uo- u ) i f ) -  Lu I (2.3) inf 
u~BV(.Q) ~ D  I'o / 

where 4oo denotes the asymptotic function of q~, or, equivalently, 

~(t~=) 
~b~($) lim * = = z ~ ( O .  t-*+~ t 

Moreover, it has been shown that inf(2.1) = inf(2.3). If  we replace in (2.3) or 
(2.1) L by 2L, the analysis in [23] shows that inf(2.3) > -- o0 if and only if 
~g" A SPa :4: 0, where 

5~ x : (a E L 2, div ~ + 2f : O, or. n = 2F/1-'z} 
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and 

= (~ E L2(D, RN), a(x) 6 K a.e.}. 

In order to determine the set of a's such that div ~ + 2f---- 0, a-  n ----- 2F, 
TI~MAM introduced in [23] the limit analysis problem 

inf j ffoo(Vv) (2.4) 
v ~ H ~ ( ~ )  
v=O[I" o 

L o  = I 

and studied its dual. He obtained that 

inf f ffoo(Vv)----- sup (2}-----2. 
veHt  (SO) ~ 3aeK 
v =01Fo d i v a + ~ f = 0  

L v  = I o . v  = 2 F  

(2.5) 

In an analogous fashion one may define the problem 

inf ! ffoo(Vv) (2.6) 
v E H  I (  D )  
v=OiTo 

L v = - - I  

and prove that 

inf f r = sup (--2} = 2. 
v ~ H  1 D )  ~ : l t r ~ K  - -  
v=0] / 'o  diva + 2 f = 0  

L v =  - -  i a . v : ; t F  

(2.7) 

Therefore a condition necessary and sufficient that ~ff A Se~ not be empty is 

Moreover it may be shown, as in [23], [21], that if --2 < 2 < 2, all the minimizing 
w 

sequences of Problem (2.1) or (2.3) with L replaced by ;tL, are bounded in BV(.Q). 
This hypothesis (called the safe load condition) is sufficient to show that a generalized 
solution for (2.3) exists. In what follows, we use Theorems 1.1 and 1.2 of the first 
chapter to improve this existence theorem: for instance, the minimizing sequences 
converge in a topology stronger than the weak topology of BV(/2). Another 
more interesting application concerns the limit analysis problem: we will show 

that, unless 2 is a special number ~ which will be determined later, the relaxed 
problem of limit analysis 

inf { J  ~b~(Vv)+ f +~(-v)~} (2.8) 
v~BV(O) ~9o 

L V =  1 

has a solution in BV(/2). 
We begin by giving a new formulation of Problem (2.8): Let/2 '  be a bounded 

open set o f R  N such that / 2 ' • / 2 = 0 ,  ~ ' A ~ = T o  and define / 2 o =  D 
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L/ f2' W F o. Assume (for technical reasons) that Uo = ZoUo, where Zo denotes 
the characteristic function o f / ' o ,  and let Uo be in H t ( D  ') with Uo I Fo = uo; 
we may extend u E BV(/'2) to -Qo by setting 

~ = { u  in /2 
Uo in /2" (2.10) 

Then ~ belongs to BV(Do), and applying Green's formula for BV(Do) we obtain 

V~t = VUla + (Uo -- u) ff ~ro + Vuol~'. (2.11) 

Let us now recall certain results obtained by R. KOHN & R. TI~MAM [12]. 

Proposition 2.1. For any u in BV(D) andany ~ in LN(/2, R N) with div tr E LN(Q), 
let (~r, Vu) denote the distribution on Q defined for  99 E c~~ by 

f (a ,  Vu)~v -- -- fd iv  ou~v -- f a  V~u. (2.12) 
D D D 

Then (0, Vu) may be extended as a bounded measure on f2 which is absolutely 
continuous with respect to ]Vu I and satisfies 

I(~r. Vu)I ~ IaI~ IVul. (2.13) 

Moreover Green's formula holds in the form 

f ( a .  Vu)~+ fud iva~0§  fu~rT~= fcr.nuq~ (2.14) 
O O O F 

for  each q~ in c~l(12). 

Let us now define on D W/ 'o  the measure 

Vzt" ~ = Vu" ~1~ + z"  n(uo -- u) t~r. 

By applying Green's formula (2.14) to the pair (u,z) where uE BV(D), r E  
LN(.Q, E) A S~'ad , we get 

f V f i . , =  f V ~ . z +  fr'n(uo-u) 
D U  F 1 D /~1 

= -  f u d i v ~ +  f~'nuo+ f~.nu 
D I ' t  1"o 

= ffu+ fFu+ fr'nuo 
D I" 1 I ' l  

which implies that we may write Problem (2.8) in the following form: 

inf { f ~ p ( V ~ ) -  f v~.~r  + f~'nuo}. (2.15) 
u ~ B V ( ~ o )  ..Q F o 

u = u 0 1 t 2 ,  

We now state the main result of  this subsection. 
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Theorem 2.1. Assume there is a minimizing sequence (Um) for Problem (2.3) 
that is bounded in BV(/2o). Then we may extract from it a subsequence, likewise 
denoted by (urn), such that fin tends to u, u E BV(/2), in the following sense: 

tim ~ u in L1(/2o), 

V f  m ~ V U  vaguely in /20, 

w(Vf,n) ~ ~(Vu) vaguely in /2o, 

U m ~ U in L~/~ N-1(/2o). 

Moreover u is a solution of Problem (2.15). 

Proof. Let (urn) be a minimizing sequence which is bounded in BV(/2o); then 
there is a subsequence, likewise denoted by (urn), such that 

Um ---~ U in L1(/2o), 

~7~ m -+ \Tf in M1(/2o) vaguely. 

We may suppose, in addition, that W(Vfim) converges vaguely to a bounded measure 
/z on [2o that satisfies n2(V~)~/~, by virtue of a lemma in [8]. Now let 
be a positive number. We denote by/2o the open set /20 = {x 6 R N, d(x, I ' 0  < ~}. 

Let q~o be in ~(/2o) with 90 = 1 in a neighborhood o f / ' ~  in R n and set 
go = 1 --  q~. For  every z in LN(/2, K) A 5e,, a we have, by applying Green's for- 
mula (2.14), 

f (7(~m) : 3) g~ = - f/~m div rg0 --  j" UmZ" Vgo ~- f Uo't" "ng 0 . 
D L,' Po g2 0 Fo 

The right-hand side converges to -- f ~ div r -- f u r  Vg 6 + f Uor" ng#, which 
O O To 

equals f (Vf : r) go (by virtue of  Green's formula (2.14)). Because # = W(VUo) 
D V  -Po 

on .Q% the weak lower semi-continuity of  the integral on open sets of bounded meas- 
ure implies that 

f /~go= f/~go- f~,(Vuo)g~ 
Ok,/Fo Fo O '  

lira f (\TU,n) go -- f ~p(~7 Uo) ga 
Do O'  

= lim f ~(V/~m) go. 
OV Fo 

Now, for given e > 0 we may choose ~ > 0 sufficiently small that 

f W*(~) < e, (2.16) 
s u p I ~  

f I/z[ q% < e. (2.17) 
t2 

Jr 1~ f I V~ [ g~ < e. (2.18) 
D 

According to Lemma (7.8) of [24], the inequality 

r(Vfim) --  Vfim : z" ~ --,p*(z) (2.19) 
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holds on /2/5 1"o, and so 

f w(vfi)- 
DL//7o 

f (Vfi:3)~ f # -  f V~:z 
~ r o  ~ r o  ~ r o  

= f ~ g 0 -  f (V~:31go+ f #wo- f (Vfi:31~o 
-OWFo -OWFo f2k.//~o t2W/'o 

l i ra f (~)(V/dm) - -  (V/~ m : T)) go -[- f l # l  wo + f 131oo I Va l  w. 
~V ro n~; ro ~o 

:< lira f (V,(Vfim) - (V~/m :T)) go -~- 2~ (by (2.17) and (2.18)) 
-O~Fo 

:~ li_~m f (~0(Vlgm) - -  (V/~ : T)) (go + ~%) + 2e + f w*(3) gn (by (2.19)) 
DW Fo /2o 

=~ lira f (~o(V/~m) -- ( V u  m : z ) )  -]- 2e + e (by use of (2.16)). 
~Uro  

Since e is arbitrary, we obtain 

f ~(V~)-V~:v=< f ~ -  f 
D L/Po -(2 W Fo D W/'o 

Vfi :z  

= inf P -- f z" nuo 
11 o 

f w(Vh)- f Vfi:, 
/~kJ I'o .OW/'o 

which implies both that u is a solution for Problem (2.3) and that w(Vfi) : #. 
It suffices then to apply Theorem 1.1 in Part I to conclude that Um-+ U in 
L~/ff-' (f2o). 

We now present a sharper form of Theorem 2.1. 

Theorem 2.2. Let  us suppose that there are a ~ > 0 and a a E L N [2, 

such that div aE LN(~2), a �9 n : F / P  1. Moreover, assume that there is aminimizing 

sequence (Urn)for Problem (2.15) that is bounded in BV. Then we may extract 
f r o m  (Urn) a subsequence, likewise denoted by (Urn) , such that 

Um -+ U in L NIN- 1 (Qo), 

Umlrl ---> U / F  1 i n  L I ( p 1 ) .  

Remark  2.1. Theorem 2.2 improves Theorem 2.1 mainly in showing U m l r ,  --> u/I ' ,  
because, in general, weak convergence in BV(f2o) does not imply convergence of  
the traces on / ' .  Let us now see an important consequence of Theorem (2.2). We 
consider the problem 

u~BV(~o) (~L//~o 
u =uo/~, 

(2.20) 
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and we define the real numbers 

sup {2} , (2.21) 
3aE L N ( I2 ,K ),divoEL N 

a.n :~.F/ F1 

2 ---- sup {--2} . (2.22) 
= =laELN(t2,K),diwr~L N 

o'n = 2F/ Ft 

It is obvious that 2 =< ~, --2 ~> --4. It may easily be seen that the strict 

inequality 2 < ~ implies that there exist ~ > 0 and a in L N Q, such 

that div tr E L N and tr �9 n = 2F/F1. We then obtain 

Corollary 2.1. I f  0 <_ 2 <_ ~ < ~ (respectively --4 < --2 <-- 2 ~ O) and if 
there is a minimizing sequence (urn)for Problem (2.15) (or (2.8)) which is bounded 
in BV(~20), then 

and 

/rim --->" /~ i n  BV(Oo) weakly, 

~(V~m)-+ 7)(Vh) tightly on ~o 

Um/r, --~ U/ F1. 

Moreover u is a solution of Problem (2.8). 

(2.25) 

Remark2.2. When hE ]--_2,2[, it was shown in [24] that every minimizing 
sequence of  (2.8) is bounded in BV(.Qo). Moreover, in that case we may give 
a rather simple proof  of  Corollary 2.1, which is due to R. TfiMAM [25]. Indeed, 

let 2' be in ]4, ~.[. We may show (following the proof  of  Theorem 2.1) that if (Urn) 
is a minimizing sequence which converges weakly to u in BVGQo), then 

f w(va) - X'Lu lira f ~ O ( V U m )  - -  2 ' Z u  m . 

s Fo 0 V Fo 

Since (Urn) is a minimizing sequence and u is admissible for Problem (2.8), 

f ~ 0 ( V u m )  - -  A L u  m ~ f ~ ( V u )  - -  2 t u .  
g2kJFo -~WFo 

Now, writing 

f ~(Vu) - 2Lu 
~ F o  

=~[aWfVo~(Uu) - -2 'Lu]+(1- - - -~)  fFo~~ 

~2-71im --2"Lure) + 1--  f ~o(V~,,,) 
- -  ~ ~ d  F o 
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we show that lim f ~0(Vfim)= f ~o(U~,~), which implies that ~o(V~m) 
m ~ + +  oo .Ok) Fo .OWFo 

-+ ~0(Vu) tightly on -Oo. By applying Theorem 1.2, we get hm/~-oo -+ u/e.Oo, 
which means that Um/r ' -+ u/F1. [] 

Let v =  (1-k  6) aEoU.  We may show, as in the proof  of Theorem2.1,  
that if (Urn) is a minimizing sequence which tends weakly to u then 

f w(vh)- f v~: ~ < lirn f ~)(V/,/m)- f VU m "'~'. 
.Ok) Fo .Ok) F o .L)kj Fo .Ok) r o 

Now let ~ be the solution of the dual problem of (2.15). According to Lemma (7.8) 
of  [24], ~?(Uhm) -- Vfim : ~ ~ --~O*(~) on ,(2 LJ Fo, and since (urn) is a minimizing 
sequence, 

f ~ ) ( V ( / ~ m )  ) - -  V ( ~ / m )  ~ - [ -  ~ /J*(~)  ~ O .  
.Ok) Fo 

Thus 

Using the fact that 

- Q U F o  we get 

~0(V(Um)) -- V(Um) :b + ~0*(b) -+ 0 tightly on .Q W Fo. 

Moreover, Theorem 2.1 asserts that u is a generalized solution, i.e. 

~0(Vh) -- Vh : ~ = --~o*(b) on ~2 W/ 'o .  

f (Urn -- U) div (~ -- ~) -~ 0 and Green's formula (2.14) on 
D 

f (~ -- z)" nu ~ lirn f (~ -- 7:). nUm, 
Ft F1 

(2.26) 
-O f ru ~ - lira ~ f Fum. 

1"1 Ft 

The opposite inequality is valid without the above assumption on a. Indeed 

f Vh:b= f ~0(Vh)+ fv,*(~) 
-Qk) 1 "o DLI F o -O 

lira f W(Vhm) + f W*(b) 
.Ok) Fo D 

=l ira  f V~ m:~. 
-OL/Fo 

Using again lim f ( u -  l l m ) d i v  b = 0, we obtain f Fu <= lirn f F u  m SO by 
m -O 1"1 F t  

(2.26) 
f F u = l i m  f r u m .  

FI Ft 

Now using once again the equality 

lim f v'(V~m)- f f U m -  f Fum 
-OU Fo -(2 l ' t  

= f w(vi,)- f f u -  f Fu 
.QkJ Fo D F ~ 
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we obtain 

lim f w(Vfi,,)= f ~o(Vu). 

Then ~p(Vfim) tends to ~p(Vu) tightly on -(20, and Theorem 1.2 in Part I ensures 
that (tim) tends to u in LNIN--I(f20) and (urn) tends to u in Lx(Pl) .  

Let us now see how the conclusions in Part I may be used to interpret limit 
analysis for previous problems. Let us recall the statement of the relaxed limit 
analysis problem introduced in Part II, (2.8), 

,t,~o(Vu) + f 4,oo(-u)h'] (2.28) inf /" 
uEBV(-O) /$ '~  /~o *' ' 

L u =  1 

which may be written also as 

[I 
u~BV(~o) q.Ok)/'o 

u=Olf~" 
Lu = 1 

This problem has the dual 

~b~(gfi)}. (2.29) 

sup {4} = L 
3a~LN( D,IC),divcr +,~f~L N 

a.n = ~F/ FI 

B 

It is clear that ). ~ ~ but it is not generally true that 2 = 2 as may be seen 
from the following example. Assume that N = 1, K = {x, Ix] < 1}, O = ]0, 1 [, 
f is defined as 

1 on [0,1/2[ 
f =  --1 on ]1/2, 1[ 

and Ft = F2 = 0. These data imply that ~ = + ~ .  Let us suppose now that 
t 

a E K ,  a ' + 2 f = 0 ,  a ( 1 ) = 0 .  We easily get c:(t)=--:.ff(u)du. We must 
0 

have 1 ~ sup [a(t)]-= ]or(I/Z)] = 2/2 and then 

~=2.  
We now state the existence of solutions of the relaxed analysis problem. 

Theorem 2.3. Assume 2 < ~. Then Problem (2.29) admits a minimizer u. 
More precisely i f  ({tm) is a minimizing sequence for Problem (2.29) we may extract 
from it a subsequence still denoted (tim) such that 

{t m --~ U i n  BV(f2o), 

~boo(V~m) -+ ~boo(Vu) tightly on ~2o, 

and consequently Um--~ U in La(/ 'I) ,  Lu = 1, and Um"--~ u in LN/N-Z([2). 
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{, } ' Corollary 2.2. I f  K is the convex set K =  ~, I t r i l 2 ~ l  and i f  2 < lF[o ~, 

the limit analysis Problem (2.29) has a solution u in BV(Q) ~ 

Proof of Theorem 2.3. The proof  is very similar to that of  Theorem 2.2. 
Indeed let (tim) be a minimizing sequence for Problem (2.28). Then (Urn) is bounded 
in BV(~o) (since $oo(V(~m) ) is bounded) and Lum ---- 1. We may extract from (Um) 
a subsequence, still denoted by (Urn), such that Um tends to u in BV(-Qo) weakly. Of  
course u = 0 in ~Q'. I f  b is a solution for the dual problem of (2.28), following 
the argument in the proof  of Theorem (2.2), we get 

f , ~ ( V u ) -  f Vu: ~__< lim f ~)oo(Vum) - -  V U  m : O" 
DkJ l'o DL/Fo f2kJ Fo 

= 2 - - 2 L u , , ,  

= 0 .  

This implies, as in the proof  of  Theorems 2.1 and 2.2, that $oo(Vu) = V u : ~  
on ~QL//10, so we immediately see that if V u ~ 0 ,  L u =  f V u : 5 =  

DU Fo 

f $oo(Vu) ~ 0, and since ~oo is homogeneous, that u/Lu is a solution of (2.29). 
D U / ' o  
In fact we will show that under the assumption 2 < ~, we cannot have u -~ 0, 
because Lu --- lim Lum = 1. To that end, we proceed as in the proof  of  Theorem 2.2. 

Since ). < ~, let ~ be in ]2, 5[ and z be in LN(Q), with z(x) E K almost everywhere, 
with respect to the Lebesgue measure clx. Since T belongs to K, $oo(Vu) - -  Vu : r 

- -$* (z )  = 0, and by lower semi-continuity of  the total variation of the positive 
measure $o~(Vu) - -  Vu : z on the open set -Qo, we deduce 

f q,o~(Vu) - f Vu: ~ __< lirn f (q,~(vh,,) - Vhm : ~) 
-QUI'o DL/Fo DkJ/ 'o  

= l i m  f V~m:a - -  f V&,,,:,. 
DU Fo -(2k/l'o 

This implies, by virtue of  $oo(Vu) ---- Vu : b on ~2 L/Fo,  that 

f Vu : (~ - 0 ~ lira f V&m : 0 -- 0 ,  
~2 ~2 

so by Green's  formula (2.14), 

f Fu => lim f rUm. 
1"1 F1 

On the other hand 

f 
f2U Fo 

Vu : ~ = f q, oo(Vu) 
�9 .QL) To 

~< lim f (/'oo(V~m) 
~ / ' o  

= 2LUre 

= f VUm:b 
D U / ' o  

t This Corollary proves a conjecture of R. V. KOHN [11]. 
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and then 

and so 

f Fu ~ lim f F u  m. We have thus obtained that 
r I I' I 

lim f F u m =  f F u  
m-'~" + co l~i l~i 

1 = Lu  m ---> Lu .  

Returning to the preceding inequalities, we find, in addition, that 

lim f ffo~(Vfim)= f ~o~(Vu), 
m - + +  oo .QL/Fo .Ok/Fo 

which means that ~bo~(~Tfi,,) converges tightly to ~b~(Vu) on -Qo, and that Um/r 1 ~ u/I'L, 
by virtue of Theorem 1.2. [ ]  

2.2. Application to perfect plasticity (Hencky's Law) 

Let us consider an elastic-plastic material which occupies an open bounded set 
s in R N, N --> 3, and is subjected to a body force of density f ,  and to a traction 
F on an open connected part -P1 of 8s The displacement u is required to equal 

u0 on -Po (where -Po is also open and F = To U -P1). The problem of determining 
the equilibrium configuration of the material is to find (u, a) defined on RN• E 
such that 

u = Uo/r o 

aPE K D 

div a + F = 0 in .(2 (2.30) 

~ ' n  = F / F ,  

i f ( u )  - A ~  : ~ - -  ~)  < O. 

Here E denotes the space of tensors of order two on R N, ~D = ~: _ { (tr ~) c5 o 
is the deviator of ~: E E, K D is a bounded convex set of E o, which contains 0 in 
its interior, and A denotes the operator of linear elasticity for homogeneous and 
isotropic materials, i.e., 

1 1 
Aijkh : "~o  ~ij(~kh -~- " ~  (~ik~jh' 

where Ko and/~ are positive constants (see [18]). I f  we set 

1 + 1  ]2 
�89  ~ = 18Ko (tr ~)2 4/zl~ :~ if ~ E K = K D •  r (2.31) 

+ ~  if ~ K, 

the conjugate ~ = 4'** of ~b* is a convex lower semi-continuous and proper func- 
tion which satisfies 

~(~) = ~ (tr ~)2 + ~D(~D) 
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with 
co ( l~D[ -  l) --< ~ ( ~ o )  ___ c1(1~] + 1), (2.32) 

f o r  some positive constants Co, cl. The equations (2.30) may be formulated under 
one  of the weaker variational forms 2 

v~H'(-Q) o r  L D ( O )  {/~ ( ~ D ( s  -]-  K 2 inf f -~- f (divv) --  f f f ' v - -  f gv} (2.33) 
divv~L2(t2) 

V=Uo/ I" o 

in terms of  the displacement, and 

sup _ f ) _ _ _ 1  f ",'.o (2.34) 
18Ko ro diva-}- F ~ O  

a ' v = g / I "  1 
a D ~ K  D 

in terms of the stress, where f E  LN(/2), FE  L~176 Uo C HllZ(-Po), Uo : XoUo. 
These problems are dual, and inf(2.33) : sup (2.34) (cf. [24], [21]). 

The study made in [24], [21] shows that if we replace in (2.33)L by 2L, inf (2.33) 
> --  o~ if and only if ~e" A 6a~ ~ 0, where Se~ and :r are defined as 

6ca ---- {a 6 L2(D, E), div a + 2 f :  0 in f2, a -  v : 2g/F1), 

J{" : (a E Lz(f2, E), a(x) 6 K dx a.e.}. 

In order to determine the 2's for which ~f"/q ~9'a ~ O we introduce, as in the pre- 
vious section, the limit analysis problem 

inf f dpoo(eO(v)), (2.35) 
L v = l  

divv ~ 0 
v=O1Fo 

the problem dual to which is 

sup {2) = 2. (2.36) 
3a~S~2U~ 

The following equality holds: 

inf (2.39) = sup (2.36). 

In an analogous fashion, we may state the problem 

inf f dPoo(eD(v)), 
L v  ~ - -  1 
divv = 0 
v=OIFo  

We may define, similarly, 2 : sup {--2}, and show that 

inf f = sup ( - 4 }  = 
L v  = - - I  S.,,2 ~ . ~  = 0 - 
divv = 0 
v =01Fo  

(2.37) 

(2.38) 

1 v denotes the outer normal to P. 
2 LD(f2) = {u C LI(D, RN), e(u) E LI(12, E)}. 
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A necessary and sufficient condition for 6e~ f~ ~ not to be empty is that --  2_ :< 

2 ~ 3.. Moreover, if --2 < 2 < ~. then every minimizing sequence of Problem 
(2.33), with L replaced by 2L, is bounded in BD(52). For  that case KOHN & T~MAM 
showed in [12] that a generalized solution for a relaxed form of  (2.33) exists. 
Following the study made in the previous section, we strengthen this existence 

result (Theorem 2.4). Moreover, we will see that if3. is less than a positive number 

which will be defined later, the relaxed problem of limit analysis, viz., 

~ B D ( D )  Fo 
L v =  1 

v ' n : 0 1 / ' o  
divv = 0 

has a solution in BD(~).  
Now let us recall some of the results obtained in [12]. 

(2.40) t 

Propos i t ion  2.2. Assume that u is in BD(O), div u is in L2(-Q) and ~ is in L2(52, E) 
with aD E L ~ ( O ,  E)  and div ~r E LN(52, RN). Le t  a~ denote the distribution 
on 52 defined fo r  ~v in ~ ( 5 2 )  by 

f <rDe~ q~= f d i vau~o- -  f a : u | 1 8 9  f t r a d i v u .  
t /  12 I2 Q 

Then ~r~ may  be extended as a bounded measure on ~ which is absolutely 
continuous with respect to leD(u)I, and the following weak version o f  Green's for-  
mula holds: 

f aDED(u) 99 § ~ f tr a div u~ 
t2 t2 

= -  f divau~v- f au | V~ + f t r . n  "u~o 
D l~t 

f o r  each ~ in (1~1(~). 

We now define on ~2 W F o the following measure: 

e(u) : tr : e(u) : tr/O § tr ~ �9 n"  (Uo - -  u)t 6r0,2 

By applying Green's formula in Proposition 2.2 for o" in L2(O, K ) / q  ~aad, we get 

f ~(a): ~ = f ~(~):a + f ~.  n .  (Uo - u) 
I2WFo -Q Fo 

= -  f u d i v a +  f~ .n 'uo+ f ~ ' n ' u  
0 Eo Fz 

= flu + f F u +  f .n.uo. 
rl 11o 

1 j ( p )  : P~Vi + PYVi j D ( p )  = ~(p) _ tr (~(p)) id. 
2 ' 

2 We  denote by ~ the extension of u to t2o by setting u' = Uo in 12'; ~ E BD(I2o); 
and div t~ E L2(12o) if and only if u.  n = uo ' F/to. 
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Therefore we may write Problem (2.33) in the following form: 

/ a/ro  ~D(e~ + T f f  (div u): -- av fro e~ : a~ inf 

div~'6L2(Qo) 
U-Uo! O" 

- ~ f (div u) a q- f,r" nuo}. 
.0 1'o 

We now state a theorem which is the analogue of Theorems 2.1. 

(2.41) 

Theorem 2.4. Assume that there is a minimizing sequence (h,,) for  Problem (2.41) 
which is bounded in BD(.Qo), and that div (Urn) is bounded in Lz(o) .  Then we may 
extract f rom  it is a subsequence, still denoted (~,,), such that 

~t m --~ u in L1(12o), 

(~)O(EO(~lm)) ~ r vaguely on f2o, 

div h,, -~ div u in L~oc(-Qo), 

II m --~ U ill C~o/r N--'(L2o), 

and u is a solution o f  Problem (2.41). 

Proof. The proof  follows that of Theorem 2. I, by replacing ~ by 4) and ~7 by e. 
We show, as in Section 1, that if0Jm) is a minimizing sequence for Problem (2.41) 
which is bounded in BD(.Q), and div/~m is bounded in L 2, then for a subsequence 
(Urn), ~/m ~ U in BD(.Qo) weakly, div Um --~ div u in L2(.Qo) weakly, and cb(e(ftm) ) 
--~ # ~ 0 vaguely in MI(.Qo), where/~ satisfies r ~ #. Proceeding as with the 
gradient, we obtain for all r in X f~ 6aad 

f ((4(e(u))-e(u):v)=< f /z-  f e(u):r 
-QL/Fo .QkJ F o ~kJ F o 

g lim f ~(e(u,,,)) --  f $(Um,)'. 7f 

.OW Fo 12kJ Fo 

= i n f P q -  f v .  nuo 
Fo 

g f #,(e(u))- f e(u):v. 
12k;/'o OW Fo 

Then we obtain 

# = lim ~b(e(u,,,)) 

= cb(e(u)), on .(2 W Fo 

and u is a solution for (2.34). This easily implies that (div u) 2 = lim (div u,,) z 
vaguely, and e~ ---~e~ vaguely.The conclusion follows by Theorem 1.1. [ ]  

We now give the analogue of Theorem 2.2. 
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Theorem 2.5. Assume that F t E L~~ F .  n E L ~176 L/H1a(_P), and that there 

are rS > O and a with a b E l  + 6 '  d ivaELN(f2) ,  a"  n ---- F/I '~ l. Le t  us sup- 

pose there is a minimizing sequence ({tin)for Problem (2.33) which is bounded in 
BD(Qo) and div ~lrn is bounded in L2(Qo). Then we may  extract  f rom (Urn) a sub- 
sequence, l ikewise denoted by (~tm), such that 

~t m --> u in LNfN-I(~Qo) , 

4,(eD(um)) ~ $(eD(u)) in M ' ( Q o ) ,  

and 

div Um -+ div u in L2(ff2o) tightly on f2 

UmlF, ~ U [ I~1 in L t ( F O .  

Remark  2.2. The Theorem 2.2 improves Theorem 2.1 mainly in that Um tends to 
u in L I ( F I ) ,  because weak convergence in BD(s does not generally imply con- 
vergence of  the trace on the boundary. 

Let us now give an important  consequence of Theorem 2.5. Consider the 
problem 

, , , ,  S , u ,  sF.,,} 
u'EBD(t~o) .Q / ' ,  

divu~L2(t2o) 
U=Uolf2, 

and define the real numbers 

and 

(2.42) 

---- sup {2} 
]a,aD~KD, diva~L N 

o'n = F/ I'~ 

2 ---- sup {--2} 
= =lo,aDEKD, diva~L N 

a .n=F/F~ 

I t  is obvious that 2 ~ ~, - -2  ~ --2.  I t  may be easily seen that  the strict inequality 

~. < ~ implies that there are ~ > 0 and a E L N ~ ,  ~ such that  div ~ E L N 

and ~ . n  = 2F/F1.  We then obtain 

Corollary 2.3. Assume that 0 ~ 2 <~ 2 <-- ~ (respectively - -2  < - -2  <-- 2 <-- O) 

and that there is a minimizing sequence (Urn) f o r  Problem (2.42) that is bounded in 

1 If  F .  n E/../1/2(/,), it suffices to suppose that 0r" n)t =- Ft. 
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BD([2o). Then for a subsequence, likewise denoted by (Urn), we have 

Zi m ----> U in BD([2o) weakly, 

4(e~ ~ 4(e~ tightly on [20, 

div 17 m -+ div u in L2([2o), 

/~ml/h ~ U I r l  

and u/[2 is a solution of  Problem (2.42). 

Remark 2.3. When 2E ]--2_, 2[, it is shown in [17] that every minimizing sequence 
of  (2.42) is bounded in BD([2o), and as in Remark 2.2 we can give a simpler proof  
of  Corollary (2.3). 

=<lim f 
DLJ F o 

which implies 

Proof of Theorem 2.5. Let 2 > 1 be such that T = ;ta satisfies z ~ E K ~ 
Let (Um) be a minimizing sequence which converges weakly to u in BV([2o). As 
before we have 

f 4(~(u)) - f e(u): v =< l irn f 4(8(~im) ) - -  f E(~im)' .  ~'. 
~QkJ Fo DtJ Fo ~QW Fo -QV Fo 

Thus if (7 is the solution of the dual problem (2.37), we get by Theorem 2.5 

4(E(~'/m) ) - -  8(/~m) : t7 -->" - - 4 * ( ( 7 )  : 4 ( E ( U ) )  - -  8(U) : (7 on [2 k) F o . 

Therefore 

f (4@@)/- ~(.1: ~) 
-QWFo 

E(Um) : ((7 - -  "K) -]- f ( 4 ( E ( l i m ) )  - -  E(Um) : (7); 
~2tJ/'o 

f Fu <: lim f Fu m. 
F1 F1 

The reversed inequality is satisfied without using the assumption on a, so we get 
f ru  : l i m  f rum, and hence lim f 4(e(hm))= f 4(e(~)). By applying 

Ft m F1 -QUFo -Qk] Fo 
Theorem 1.2 in Part I, we conclude, in addition, that Umlr, -+ u I F1. [ ]  

Let us now see how the conclusions in Part I may be applied to limit analysis 
in plasticity. 

We begin by recalling the relaxed form of the problem for perfect plasticity: 

{ + 
v~BD(-Q) .O Fo 

Lv = 1 
divv = O,v'n ~ O~ Fo 

which may also be written in the form 

inf { f 4~(e~ (2.44) 
L v = I  -Qi kJ/'o 

veBD(-Oo) 
v=Ol~" 
divv--O 
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The dual problem of (2.37) is 

We recall that ~ is defined as 

s u p  {a) 
3a,a D EK D 

diva -}- 2f= 0[ D 
a.n =F/F1 

(2.44) 

= s u p  
3a,aD~K D 

diva~L N 
(a'n) =,iF 

The expected result is the following 

Theorem 2.6. Let us suppose that 2 < ~. Then Problem (2.43) has a solution u 
in BD($-2) with div u E L2(52). More precisely, i f  (~tm) is a minimizing sequence for 
Problem (2.43) we may extract from it a subsequence (~tm) such that 

/~m "">" U i n  BD(Qo) weakly, 

r __~ ~b~(eD(u)) tightly on ~o 

and consequently ?t,~ -+ u in LI(F1),  Lu = 1 and Um-+ U in LN/N--I(OO). 

Proof. The proof  is similar to the proofs of  Theorems 2.3 and 2.5. I f  (~m) 
is a minimizing sequence for Problem (2.42), eD(~m) is bounded in M1($2), and 
since div Um ---- 0, we may extract from ~,~ a subsequence, also denoted by (urn), 
such that 

Um ---> U i n  BD(Oo) weakly. 

We have div u = 0 and if 3 is a solution of  the dual problem we obtain, as in 
the proof  of  Theorem 2.5, 

= o n  w _re.  

Then if u @ 0, u/Lu is a solution for Problem (2.43). We may in fact show, 
as in the proof  of Theorem 2.3, that Lum ~ Lu and finally obtain the expected 
conclusion. [ ]  

2.3. Application to the theory of elastic-perfectly plastic plates 

Let us consider a plate which occupies a bounded domain O of R 2 (~$2 is 
supposed to be C2). We assume for simplicity that this plate is subjected to null 
force and moment on the boundary, and to a surface load of the form 

f----- g + ~V'/f/i ~i 
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where /z,. E ll(R) 1, Oi is the Dirac measure on (xi) and g E L2(~c~), the xi's having 
only a finite number of  cluster points on every compact subset of  [2. In consequence 
of  the study made in [6], the variational problem for elastic-perfectly plastic plates 
may be written in the form 

inf / fv~(VVu)-jfu} (2.45) 
uEHB(12) [ .Q 

where ~v is the conjugate of ~v*: 

�89 AM: M if 
~o* 

+ 0o if M ~  

K is a bounded convex set of K which contains O 
definite operator on E. 

It is shown in [6] that the dual problem of 

sup { -- 
V'7"M+g=O in -Q 
bI(M)--OIF, M~K 

bo(M)=OI F 

Moreover, when M E L~([2, E), V �9 V �9 M([2) and u belongs to HB([2), we de- 
fined in [6] the measure 7 7 u : M  on 12 and proved 

M E K  

K, 

in its interior and A is a positive 

(2.45) is simply 

f f  7~*(M)}. (2.46) 

Proposition 2.3. i) Let VVu : M be the distribution defined as 

f V V u : M q o =  f u V . V . M ~ - - 2  f ( V u |  fu(VV~o):M,  

for every q~ in ~ ( ~ ) .  Then VVu : M may be extended as a bounded measure on ~ ,  
such that 

tVVu: MI _-< XVVul [M[~. 

ii) Green's formula holds in the following form : 

f (VVu: M) ~o = f u V .  V .  M~ + f b~(~'~9 q~ + u -- f bo(M) u~, 

for every q~ in ~1(~)). 

We now establish the existence of  a minimizer for Problem 2.45. 

Theorem 2.7. Assume that ( f ,  p~ = 0 for all p in ~1 2, and suppose that 
there is a minimizing sequence (urn)for Problem (2.45) which is bounded in HB([2)/~ 1- 
Then there is a subsequence, likewise denoted by (Urn), and a sequence (Pm) in ~ l ,  
such that 

Um - -  Pm "-+ U in HB([2) weakly, 

W(~7~Tu,,) ~ v2(VVu ) vaguely on [2 \ k )  { x i } .  

x lX(l~) denotes the class of absolutely convergent series. 
2 ~ ,  denotes the space of the affine functions on I2, or, equivalently, ~'~ = {TE ~'(12, E) 

V~TT = 0}. 
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Moreover u m -- Pm is pointwise convergent to u on [2 \ kJ {x;} and u is a solution 
i 

for  Problem (2.40). 

Proof. Let us note first that by virtue of the generalized Green's formula in 
Proposition 2.3, we may write 

8u 
f V V u : M =  f f u +  f b ~ ( M ) - ~ n - - / b o ( M ) u =  f S u ,  

J2 D 21 s 

for M in ~ad and u in HB([2). Therefore, Problem (2.45) may be written in the 
form 

f ~0(VVu) - f VVu: M. 
~2 g2 

Now let (urn) be a minimizing sequence for Problem (2.45), which is bounded 
in HB([2). We may extract from it a subsequence, again denoted by (Urn), and take 
Pm E ~ such that 

Um -- Pm-+ U in WI'I([2) (strongly), 

VVum ~ VVu in Ml([2, E) vaguely, 

e > 0. Then we select a positive number 6 and we denote by (cf. [71, [61). We fix 
I2n the open set 

f2a = {x E R N, d(x, 1") < ~}. 

We construct ~0~ in N ( [ 2 e ) ,  q% = 1 o n / ' ,  0 G 99a ~ 1, and we set g6 = 1 - -  q)e. 
We choose ~ > 0 so small that 

where 

f IVV~l < ~, (2.47) 
t/6 

f v/*(M ) < e (2.48) 

M E L~([2, K), M E 5aaa. We denote by d~ the finite subset of  /, J0 = 
{jE If xj is a cluster point in [2 \ [2~}. 

choose ~ > 0 so that 

f I VVul < e and f 
LI B(xj,t~ D kJ B(xj ,d D 

jsJr jEJ~  

Since f [ V V u I = 0  V I E / ,  we may 
{.~j} 

~0*(M) < e. (2.49) 

xn E k..] B(x:, ~/z) L/[2~, n > N (2.50) 
j ~ J  

and we may choose 02 such that 

f [VVul < e, and f ~0*(M) < e. (2.51) 
N N 
LI B(xj,d2) L/ B(xj,~a) 

j = l  j = l  

On the other hand there is an NE N such that 
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Let now ha be (goo with compact support in k.J B(xj, 6l) k J B(xj, ~2), ha = 1 
J~Ja j~[1,N] 

on (kJ  B(xj, 01/2)~ kJ { k J B(xj, 02/2)), 0 ~ ha ~< 1. We may write 
~ieJ a I U~[~,N] / 

f ~p(VVu) -- f VVu : M = f (w(WVu) - (VVu: M)) (~a + gaha) 
12 O 

+ f @p(VVu) -- (VVu: M)) ga(1 -- ha). 
D 

By lower semi-continuity, 

f w(VVu) ga(1 -- ha) _--< li__m f w(VVum) ga(1 -- ha), 
t2 12 

and since 1 -- ha = 0 on every xi 6 Supp t g0, Green's formula in Proposition 2.3 
implies that 

f (VV/~ m : M) ga(1 -- ha) ~ f (vvh: M) ga(1 -- ha). 
f2 ~2 

We now focus our attention on the term 0p(VVu)-  (VVu: M)(gaha + q~a). 
Using (2.47), (2.49) and (2.51) we have 

f (w(VVu) - (VVu : M)) (9% + gaha) 
D 

f ~p(VVu) + I MI~ 
supptq~aL/supptha 

=<c, f tVVul 
supptq~akJsupptha 

=<c~[ f ]VVu[ + 
~6  

f lVVul 
suppt~akJsuppth a 

f jVVul + f 
LI B(xj,al) N 

JeJ a ~ B(xj,a2) 
Je:a 

3CIE. 

By recalling the previous inequalities, we get 

f (~(VUu) -- (U~Tu : M)) ~ 3cle + f (~v(VVu) -- (U~Tu : M)) g(1 -- ha) 
I2 12 

3 c :  + lim f (w(VVUm) -- (VVUm : M)) ga(l -- ha) 
g2 

<~ 3cle + lim f (v'(VVUm) -- (VVUm : M)) 
g2 

+ f *p*(M) (cpa + gaha) 
12 

Slirn f (v,(VVum) - (WUm : M)) + 3c:  
f2 

+ f @p*(M)) 

I j e J  a j = 1 
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lim f tp(VVum) -- (VVum : M) q- (3c~ q- 1) e 
l/ 

(by (2.48), (2.49) and (2.51)) 

= inf P q- (3cl -k 1) e. 

Since e is arbitrary, we deduce that u is a solution of Problem (2.45). The inequality 
~p(VVu) -- VVu : M ~ --~0*(M), which holds for any M 6  K A  6aaa, becomes 
an equality when M = M, namely a solution for the dual problem (2.46). 

Since f (~o(VVum)- VVUm: ~/D c o n v e r g e s  to -- f ~v*(M), by using the 
t2 

inequality ~o(VVum) -- VVum : M ~ --~v*(~t) on 22 we obtain 

v(VVum) -- VVUm : M - +  --~v*(M) = ~p(VVu) -- VVu : M (tightly on ~) .  

Since V~TR m : ~ f  ~ VVU " J~f vaguely on 22 \ kJ {x,.}, we conclude, in addition, 
i 

that ~0(VVum)~ ~(VVu) vaguely on 22 \ ~] {xi}. Theorem 1.3 then asserts that 
i 

(Urn) is pointwise convergent to u on 22 \ / J  {xi}. 
i 

We now give the analogues of Theorems 2.2 and 2.5. We begin by defining 

the real numbers ~. and [ by 

: sup {2}, (2.52) 
]M~L ~176 

V'V'M:~(g+ ~/g i~ l) 

bl(M)=O/F, bo(M)=O/F 

= sup {2} (2.53) 
:I M~L ~176 ~,K) 

V'V'M--~ ~.~Pi~i6LI(t2 ) 
i 

bl(M)=O/F, bo(M)=O/F 

and consider the problem 

u irtnaf m ( / ~ p ( V V u ) - - 2  [ j g u  + ~/z i t~ , ] ) .  (2.54) 

Theorem 2.8. Assume that 2 < ~ and that there is a minimizing sequence 
(urn)for (2.54) which is bounded in HB. Then we may extract from it a subsequence 
such that 

Um ~ u in HB weakly 

and 

Um is pointwise convergent to u in 22. 
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Proof. Taking 2' E [2, ~[, and M in L~(O, K) such that V �9 V �9 M -- 2' Z # i  3i 
E LI(.Q), we have, following the proof  of Theorem 2.1, 

f Qp(VVu) -- VVu : M) ~ lirn f (~o(VVum) -- (VV/./m : M)) 
/2 /2 

= lim f (~(VV/,/m) - -  ( V V / , / m  : / ~ ) )  -j- lira f (VVu m :(114 -- M)) 
/2 /2 

= f (v,(VVu) - (VVu:_~))+ li_m f V V u m : ( M  -- M). 
D ~2 

This implies that li'--m f VV(u - urn) : (M - M) ~ 0. The reverse inequality is 
D 

true without using 2 < ~ and may be obtained as follows: 

f VVu: M = f ,p(VVu) + f ,p*(/~) 
/2 ~ .(2 

lira f (v,(VVum) + ~0*(M)) 
[2 

= l i r a  f (VVum : M). 
D 

Consequently, li---~ f VV(u -- urn): ,~ ~ 0, so lira f VV(u -- /'/m) " /~ = 0, By 
using Green's formula and )hrE 6gad, we get 

We have thus obtained 

lim ~ /~,(u -- Urn)(Xi) = O. 
m i 

lim f ~p(VVum) = lim f VVum : ~I + f ~?(VVu) --  f VVu:  ~ = f v,(VVu), 
/2 /2 /2 .O .O 

which implies that Qp(VVum)) converges tightly to ~p(VVu) and that (urn) is point- 
wise convergent to u in O (by Corollary 1.1). [ ]  

Remark 2.5. By Proposition 1.2 we conclude that 7o(Um) converges to yo(U) in 
yo(W2'l), and that yl(Um) converges to yl(u) in LI(F).  

Remark 2.6. We could have treated the more general case where the plate is sub- 
jected to boundary conditions 

U ~ U O / F o W F  t 

~u 
~--~ = ul/ro 

b,(M) = Dx/I'2 V F~ 

bo(M) = D~ 
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with f b e i n g  as before. The proof is then a combination of the arguments used in 
the proof of Theorem (4.2) in [6] and of Theorem 2.8 here (Sections 2.1 and 2.2). 

We now consider the limit analysis problem for plates. We begin by recalling 
the relaxed limit analysis problem for plates: 

inf {ff lp~o(VVu)). (2.55) (f.u) = 1 
u ~ H B  or  HB/ . r  ~a 

The study made in [6] showed that 

inf (2.55) ---- 2. 

We now establish existence of a solution. 

Theorem 2.9. Assume that 2 < ~. Then a solution u o f  Problem (2.55) exists. 
Moreover every minimizing sequence converges pointwise to u. 

Proof of Theorem 2.9. Let us take a minimizing sequence (Urn) for Problem (2.55); 
(Urn) is bounded in HB/p, so there are a (p,,) in P~ and a subsequence, also de- 
noted by (urn), such that 

um --  P,n --> u in HB weakly. 

We may take Lum = I. Let us now consider M such that 2M E K, for some 
2 >  1, and V . V . M - - z ~ , t z i t g i E L  1. We have 

f ~0oo(VVu) -- f VVu: ;tM =< lim f ~3oo(~VUm) --  f VVUm'. 2 M 
K2 12 .Q 12 

= l i m  f ~ooo(VVum) -- f V V u  m " M + f V V u  m : ( g  - -  ~1~) 
12 12 12 

= f wo~(VVu) - f VVu: a~ + li__m f VVu m " (M -- 2/~), 
12 12 12 

where M is a solution for the dual problem (2.52). Following the proof of Theo- 

rem 2.8, we get Wo~(gVu) = VVu : a7 and then 

f VVu : (M -- AM) ~ lim f vvu., : (~7 - ;tM). 

The opposite inequality holds without the assumption 2-< ~ on 2-, as may be seen 
by 

f V V u :  M = f~,(VVu) <= lim fw(VVUm) = lim fVVUm : M.  
O f2 12 I2 

By Green's formula in Proposition 2.3, these inequalities imply that 

X #, u(x,) = li___m ~g a,.~(x,). 
t i 

We thus obtain Lu = lim Lure = 1 and that f w(VTu,~)---> f w(VVu). 
12 12 

This implies, by virtue of Corollary 1.1, that Urn(X) ---> U(X), for every x in .O. 
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We conclude with a brief discussion of  the case 2 z 2. For  more  details, the 
reader may consult  my thesis [26]. In [19] SUQUET proposed another  form of  a 
relaxed problem in limit analysis. For  definiteness, we state it here for  the case o f  
antiplane shear in plasticity: 

{ f  ~p~(Vu)-P- f 4>~(--uff) q- ~, f IFI lu + -- u-II., (2.56) inf 
u~BV(~Q) Fo 

u+~L ~( FD 
fs~,+ yeu+ , 

D F 1 

This is a convenient  relaxed form for  Problem (2.28), since, as we showed in 
[26], Chapter  l I I ,  i n f ( 2 . 2 8 ) =  inf(2.56) and (2.56) admits a solution (u, u§ 
By contrast ,  as shown in [26] by means o f  a counterexample,  Problem (2.28) does 

no t  generally have a solution when ~. = ~. Furthermore,  when (2.28) does no t  

have a minimizer, the only solutions o f  (2.56) are o f  the form (0, o~F) where 0~ 
L I(F1)  and f o~F 2 = 1. The p roo f  o f  these results and their analogues in plasticity 
and plate theory are given in [26]. 
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