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Abstract

In this paper we study necessary and sufficient conditions on f and
the first eigenfunctions for the 1-Laplacian, for equations of the form

—div(e) = A= fu?! u>0in Q,
o-Vu=|Vu|, [o|p~@) <1, ue Wol’l(Q)

when q < % and A > Aq, A is the first eigenvalue for the 1-
Laplacian.

1 Introduction

In this paper we are interested in the existence of solutions for the following
partial differential equation
—div(o) — A = ful™! u>0in Q, (1)
o - Vu=|Vul, o|peco) <1, u e WOI’I(Q)

where € is some bounded domain in IRY, which is piecewise C' and f €
C(2) N L>(Q).

The results presented here extend to the case where p = 1 the one
obtained in [12] for the case p > 1.

Previous results about this type of p.d.e. have been developped in [13].
They concern the case where the functional Jy defined by

) = | (V] = Au)

is coercive. This means, with the notations here employed, that A < Aq,
where



M=t (v (2)
ueWy (), [, lul=1 /O

The properties of A1, called first eigenvalue for the 1-Laplacian and of
the ”minimizers” of (2) are developped in section 2.

The difficulties here are of several types

1) The solutions of (1) are obtained as minima of functionals which are
non coercive. This difficulty can be overcome by using a process borrowed
to Ouyang [29] in the case of the usual Laplacian and to Birindelli Demengel
in [12] for the p-Laplacian.

2) As in the case of coercive problems in BV (), the lack of compactness
of the trace map does not permit to ensure that the boundary condition
u = 0 holds. This leads to introduce a relaxed version of the variational
functional that we minimize, for which one is able to prove the existence of
a minimizer. This relaxed term is responsible of the weakened version of the
homogeneous boundary conditions ”o.7iu = —|u| on 9Q” which appears in
equation (5) later.

3) The solutions that we obtain are minima of nondifferentiable func-
tionals, hence difficulty occurs when one tries to exhibit a partial differential
equation satisfied by u. The usual process used to find the p.d.e. associ-
ated to BV functionals consists in using duality theory. Unfortunately, this
cannot be employed here because the constraint [, f|u|? = 1 is not a con-
vex constraint. In order to overcome this, one can use an approximation
by means of a functional defined and coercive on Wol 1TQ), e > 0. The
following steps consists in letting € go to zero.

4) In the critical case, additional difficulties occur when passing to the
limit : The existence’s result can finally be achieved by using an adaptation
of the famous concentration compactness principle of P.L. Lions [26].

Let us make a few remarks and precisions about the setting : First, we
need to extend the definition of the p.d.e. (1) in order that it makes sense
for functions in BV ().

Proposition 1 Suppose that  is some bounded domain in RY whose bound-
ary is piecewise C'. Suppose that u € BV (Q) and o € L¥(Q,IRY), is such
that div o € LN (). We define the distribution o - Vu by the following

1) For every ¢ € D(Q)

(0 -Vu,p) = —/Qdiv(a)ucp - /QU -V(p)u (3)



The distribution o.Vu hence defined is a bounded measure in €2, absolutely
continuous with respect to |Vu|, with

o+ Vul < [Vullol
2) The following generalized Green’s formula holds for ¢ € D(IRY)

(o -Vu,p) = —/Qdiv(a)ucp - /Q(a -Ve)u + /BQ o - nup (4)

where 1 denotes the unit outer normal to Of).

3) Define

o-(Vu)® =o0.Vu —o-Vu,

where Vu® and Vu® denote the absolutely continuous and singular part of
Vu. Then, o.(Vu)® is singular and

o+ (V)] < (Vi ||oloe
The proof of Proposition 1 can be founded in [34], [13].
We shall say that u > 0, u € BV (2) satisfies (1), if
—dive — A= fu?™! w>0 inQ,
o-Vu=|Vul, in Q (5)
o-fi(—u) =u on 0N
We shall denote in the sequel the equation (5) as eqy.

Remark 1 Suppose that u € BV () and define @ by

- Ju in
“Z1 0 in RMN\Q

Then, @ € BV (IRY), with
Vi = Vuxq + (—uit)dsn
with dpq the uniform Dirac measure on 02. and

IVa| = [Vulxa + [u[da.



Finally, let us define the measure 0.Vu on QU I as
o.Vu = 0.Vuxq + 0.7(—u)dsn

It satisfies
o-Vu=|Vu| on QU N

iff
(6)

o-Vu=|Vu|in Q, |o|pe) <1,
o - fi(—u) =u on )

In the sequel we shall drop the tilde on u and say that 0.Vu = |Vu| on
QU IR as soon as (6) is satified.

Remark 2 Let us observe that except if A = A1, we do not need to precise
that we look for nontrivial solutions. Indeed, 0 is a solution if and only if
there exists some o, |0|s <1 and —div(c) — X = 0. This cannot happen for
A > A\ since one has, multiplying by any v € BV (Q), v >0, v #0

)\/v:/a-Vv—/ U.ﬁvg/ Vol
Q Q onN QUOIN

since |0|oo < 1, using Proposition 1. Dividing by [, v one gets that X < A;.

The solutions of such equations are particular case of what we called
”almost weakly 1-harmonic functions”, defined in [15] :

Definition 1 Let ) be a bounded domain in RY, piecewise C'. u € BV (Q)
is said to be weakly almost 1- harmonic if there exists o € L>®(Q), |0]eo < 1,
div(o) € LY (Q) and
o0.Vu = |Vu|

on QU 0.

The main properties of such functions which are required in this paper
are enumerated in Section 2.

We now present the results here enclosed. First, we prove some necessary

conditions on the solution when it exists, and the consequences on f.
Let us define the sets Q7 and Q~ by

Qf ={zxcQ, f(z)>0}

O ={zeQ, flz)<O0}



Let us denote by K (N, 1) the best constant for the Sobolev embedding from
WULHIRYN) in LY (IRY). This constant has been computed by Aubin [7],

Talenti [36] and has value K(N,1) = |SN|_W1N_1+%,
Theorem 1 Suppose that there exists a (nontrivial) solution to eqy, then

o 1 For A\> X\, Q™ #0, and for all first eigenfunction ¢, [ f|p|? < 0.
o 2. For A=\, QT #10.

Remark 3 In the case where N = 2 and ) is a regular convex domain, it
is known that there is uniqueness of the first eigenfunction (up to a con-
stant). This is a consequence of the uniqueness of the Cheeger set under
these conditions. [7], [10], [3].[4], [30], [32]

The second result concerns the nonexistence for A large and the fact that
the set of A for which there exists a solution is an intervall.

Theorem 2 Suppose that N > 1, and that ¢ < 1* = % Then, there
exists A* such that for X > \* no solution exists for eqy. Moreover, the set

of A > A1 for which eqy has a solution is an intervall.
We now precise the existence’s result in the subcritical case :

Theorem 3 Suppose that N > 1, Qt and Q= #0, ¢ < 1*, and [, f|$|7 < 0
for all first eigenfunction ¢. Define

mg(\) = . inf {I(w)} = inf {JA(u)+/ ||}
ueWy (), [, flula=—1 weBV(Q), [, fluli=—1 90

and

Pg(A) = . inf {n(u)} = inf {Jx(u) +/ |u|}
ueWy™ (), fﬂf|u|q:1 u€BV(Q), fﬂf|u\q:1 90

Then, for X sufficiently close to A1, A > A1, mg(X) and py(N\) possess each
at least one solution, which is, up to a multiplicative constant, a solution to
the p.d.e. eqx. For A = A1, pg(\1) provides, up to a multiplicative constant,
a nontrivial solution to eqy, .



Remark 4 We shall denote as Jy , the relaxed form of Jx, Jyr(u) = Jx(u)+
Jaoq [u] for uw e BV(Q). (See[34], [35] for a more general definition of the
relazed formulation).

Theorem 4 Suppose that N > 2, that QT and Q= # 0, and that [, fol” <
0 for all first eigenfunction ¢. Suppose also that f € C(Q1). Define

m(\) = L inf . {n(u)} = inf ) {J/\(U)‘*'/ )}
u€Wy " (Q), fﬂ flu|P =-1 ueBV(Q), fo|u|1 -1 99
and
p(A) = . inf {In(u)} = inf X {Jx(u) +/ |u|}
weWy(Q), [, flult*=1 w€BV(Q), [ flul'*=1 90

Then, for X\ > A1 , and for X sufficiently close to A1, m(\) possesses at least
one nonnegative solution which is, up to a multiplicative constant, a solution

for eqy.
Suppose that

x-"‘

p(AM)K (N, 1)(Sgpf)1 <1,

then, for X sufficiently close to A1, A > A1, p(\) possesses a solution which
is also, up to a multiplicative constant, a (nontrivial) nonnegative solution
to the p.d.e. eqy.

The plan of this paper is as follows :

In section 2 we give the results about almost weakly 1 harmonic functions
which we shall need here. In the third section we present some existence’s
result concerning the first eigenvalue and corresponding eigenfunctions, we
give some properties of the solutions when they exist, and we exhibit ex-
plicit particular solutions in the one dimensional case. The fourth section is
devoted to the necessary part, as stated in Theorem 1, and to the proof of
Theorem 2.

Section 5 and Section 6 are respectively devoted to the proofs of Theo-
rems 3 and 4.

We end this section by recalling a density result which is classical in the
theory of BV functions, a result that we shall frequently use :



Proposition 2 Suppose that Q) is some bounded domain in RN whose bound-
ary is piecewise C' and that u € BV (Q). Then, there erists a sequence

Uy € WOI’I(Q) NC>(Q), such that

/|un—u|k—>0
Q

/\Vun\—>/ |Vu\+/ |u|.
Q Q 15)9)

2 Functions weakly almost 1 harmonic

for all k < 1%, and

In this section we give some of the properties of almost 1-harmonic functions
which will be useful to obtain existence and non existence’s results herein.

The properties which follow are all consequences of a technical approxi-
mation result which permits in some sense to work with BV functions which
are almost 1-harmonic as if they belong to the space W1,

Proposition 3 Suppose that Q is a bounded open set in RN, which is piece-
wise C1 and that uw € BV (). Suppose that u is almost 1-harmonic. Then,
there exists a sequence (uc) in Wol’He(Q), such that ue — wu in BV ()
tightly, more precisely

lue —u|? — 0,

/|Vue|1+€—>/ |Vuy+/ .
Q Q o0

Moreover if o is given by proposition 1 , o¢ — o in L1(Q) for all ¢ < 0o and
div(o.) — dive tends to zero in L™ ().

for all g < 17 and

This result permits to prove the results which follow.

Some of the proofs are detailed in [15]. For others, and for convenience
of the reader, we have given an outline of their proof in the appendix. It is
the case for the L> bound type result (Proposition6) and for the Picone’s
type inequality (Proposition7).



Proposition 4 Suppose that u is weakly almost 1-harmonic, then u* and
u” are also weakly almost 1-harmonic, and

o(u).Vu' = |Vu|
o(u).V(—u~) = |Vu~|
on QU 0S.

Proposition 5 (Weak Comparison Principle). Suppose that u' and u? are
in BV () and almost 1 harmonic in Q. Suppose also that

—div(o(u')) = f1 > 2 = —div(o(u?))
(in the sense that fi(x) > fa(x) for almost every x € Q). Then
ut > u?
in §2.

Proposition 6 Suppose thatw € BV (Q)NL>*(Q)is weakly almost 1-harmonic.
Then for all k € N, |ul*1u is also almost 1-harmonic and

o (u)-V (Jul*"u) = [V (|ul* )|

Proposition 7 Suppose that u is almost weakly 1 harmonic in ), then u €
LY(Q) for all t < co. If moreover div(o(u)) € LY(Q) for some ¢ > N, then
u € L>®(Q).

We end this enumeration by some technical result which will be a key in-
gredient for the necessary part in theorem 1

Proposition 8 Suppose that u and ¢ are nonnegative in BV (2) N L*>(N2),
and are almost weakly 1 harmonic in Q). Then for all € > 0, and for all
k>1,q>1,

k
(o(u) — 0(6)).V <¢> <0



3 On the first eigenvalue for the 1-Laplacian

3.1 The case where N > 2

Let © be a bounded smooth domain in IRY. Let us define the first eigenvalue

of "minus the 1-Laplacian ” as follows
A= int {/ IV} (7)
ueWyH(Q), [, lul=1 /O

The existence of a minimizer for A; as well as the existence of a p.d.e.
satisfied by this minimizer is given in the following

Theorem 5 One has

M= inf {/ Vul} =  inf {/ |vu\+/ u} (®)
ueWO’(Q),fQ\u\:l Q uGBV(Q),fQ\M:l Q 19]9)

and the infimum on the right hand side above is achieved. Moreover among
the minimizers, one of them is nonnegative and satisfies the p.d.e. : Jo(¢) €
L=(Q,RN) such that

—divo(¢) + (=A1) =0

o(¢).Vé =|Ve|in 2,  |o(d)lec <1 (9)

—o(¢).p = ¢ on 0}

Proof of theorem 5
We prove first that

it ([ vab= ([ 9ul+ [ )
ueWy (Q), [, lul=1 /2 weBV(Q), [, lul=1 /o 20

One obviously has

inf ([ vu> ot (V[ ul)
ueWy (), [, lul=1 JQ weBV(Q), [, [ul=1 /2 50

For the reverse inequality, let § > 0 be given, and uy be in BV (2), such
that [, |ug| =1 and

/|w0|+/ luo| < inf {/ |vu\+/ |} + 6
Q N weBV(Q), [, lul=1 /Q N



Using the density result as stated in Proposition 2, there exists a sequence

u, € Wy''(Q), which is such that fQ |up, — uo| — 0, and [, |Vu,| —

JolVuol + [y luol. Taking v, = o] | T
Q

converges towards u in the sense that [, [Vo,| — [ [Vuo| + [5¢ [uol-
This implies that

inf {/ |Vul} = mf {/ ‘VUH‘/ lul}.
ueWy (), [, lul=1 /@ weBV(Q), [, lul=1

We now prove that there exists a minimizer for

inf {/ qu\+/ lul}.
weBV(Q), [, lul=1 /€ ly)

Let (up)n be a minimizing sequence for this problem. Then, the extension of
uy, by zero outside of Q is bounded in BV (IR"V). Hence, one can extract from
it a subsequence, still denoted u,, such that u, — u in BV (IR") weakly.
Obviously u = 0 ouside of Q. Using lower semicontinuity, one has

|9l <t [T =

By the compactness of the Sobolev embedding from BV (£2) into L(Q),
one has |ul; = 1. Since u = 0 outside of Q, one has Vu = (—u)iidsn on 99,
and then [~ [Vul = [ |[Vul + [5q |u| and u is a solution for (8).

In order to prove that u satisfies (9), let us consider the variational
formulation

one has a sequence v, which

A= inf {/ V|,
ueWy (@), [ lul=1 /@
Since |V|u|| = |Vu|, and [, |u] > [, u, one has
A€ = |VU‘1+€

inf {/
GWl 1+6 (), fﬂu 1

It is clear that lim._,gA¢ < A;. On the other hand, the problem defining
A€ possesses a solution u. which is nonnegative and satisfies the p.d.e.

—div(oe(ue)) —A°=0

where

Oc = |Vue|€71Vu€.

10



Since [Rrn |[Vue/'™ = A€ and [ |ue| = 1, the sequence (uc) is bounded in
BV (IRY), and by extracting from it a subsequence,- still denoted (u.)- one
gets the existence of v € BV (IR) which is zero outside of 2, and satisfies,
by lower semicontinuity

M= [9ul+ [ ful <l g [ [Tu' = lme o < A
Q o) Q

This implies that [z~ [Vu| = lim [~ [Vue|. On another hand, one has that
o¢ is bounded in every LF for k < oo, then, it converges for a subsequence,
in every L¥(Q) weakly, to some o € Ny L*. In fact, 0 € L™, since |0|s <
limsup |o¢|1+e < 1. This implies that o € L>(£2) with a norm less than 1.

Passing to the limit in the equation satisfied by u. one obtains that

—dive — A1 =0 (10)

There remains to prove that 0.Vu = |Vu| in Q and o.7i(u) = —u on 09Q.
First using Proposition 1, one has |0.Vu| < |Vu|. Secondly, multiplying the
equation (10) by u and integrating over {) one obtains

/ o.Vu+ o.i(—u) — )\1/ u=20
Q oN Q
This implies that

/a.vu+/ a.ﬁ(—u):/ IVl :/ |vu|+/ 1yl
Q o0 RN Q o0

and then 0.Vu = |Vul in Q and 0.7(u) = —u on 09Q. Finally u is a solution
for (2) and we have obtained in the same time that A\ — A;.

Remark 5 One could have used duality and convex analysis, as developped
by Ekeland and Temam in [20], to find the partial differential equation sat-
isfied by u.

Remark 6 One proves in [14] that among the eigenfunctions there erists
the characteristic function of some set E. This will be useful when we shall
consider particular sets Q0 (see the examples proposed below).

Proposition 9 Suppose that A > A1 and that u is some nonnegative eigen-
function associated to A, say

—divo(u) = A =0
o(u).Vu = |Vu| in QU 0N

Then, A = M.

11



Proof
Suppose that ¢ > 0 is some eigenfunction for the first eigenvalue A;.
Suppose that there exists some u > 0 which satisfies for A > Ay

—div(o(u)) = A =0 in Q
o.Vu = |Vu|in Q, o.iu = —u  on 09

Substracting the equation satisfied by u to the one satisfied by ¢, multiplying
by ¢ and integrating over €2, one gets

L@ o)+ [ (0(6)=ow)iio= (=) [ o

The two integrals on the left hand side are negative, hence one gets that
(A= A1) Jg ¢ <0, which implies that A = A;.

Proposition 10 Suppose that ¢ is an eigenfunction for the first eigenvalue
A, ¢ > 0. Then, ¢ € L®(Q) and for all f strictly increasing and C*, such
that f(0) =0, f(¢) is also an eigenfunction for \;.

Proof : One uses Propositions 6 and 7.
Example

Suppose that B(0, R) is a bounded open ball in IRY. Then, the only
eigenfunctions are the constants and \; = %.

Indeed, let o(z) = —%. o satifies || <1 in B(0, R), and
0.V(cte) =0

inside €2, and
on(—cte) = |cte|

for |x| = R. Since —divo = %, this proves that the constant are eigen-
functions for the eigenvalue %. Using Proposition 9, necessarily, % is the
first eigenvalue. To see that the only eigenfunctions are the constant func-
tions, suppose that 1 is another eigenfunction, and multiply the equation

—div(o) = % by v, with o defined above. Then one obtains that

/Bo—.v¢+/aB¢ZZ/B¢

2 o= [l [ v

12

Since 1) is a solution,



and then
AL

in 2. This implies since || < 1 inside €2, that V¢ = 0 in © and then ¢ = cte.
Let us observe that the same result holds with a crown B(0, Re) — B(0, R;)
in place of a ball. The fact that constant functions are eigenfunctions is
linked to of the euclidian structure of the ball and some of related sets : For

example, the square C' =] — 1,1[? does not admit the constant functions as
Ty
343+ %

eigenfunctions for the first eigenvalue. One can prove that A <

2= %. Indeed, let us consider the set £ = C' — (1 where C is

—1 1 1 1 1
Ci={-1<z<— y>-= )2 — 22>z
1 PSS Y2y @ty )2 )
One can compute
T
OE| =7+ —
0B =7+
3 7
E|= -+ =
B =3+ 4 + 16
and if one takes u to be the characteristic function of E, u € BV (C) with
JoIVul _10B] _ 7473
Je lul Bl 3+31+ 15

One can prove with similar arguments that for all rectangles eigenfunctions
cannot be constant.
One can also see the more complete results in [3] and [4].

We end‘ th|is section by establishing a condition which permits to ensure
of)
that )\1 = W
Proposition 11 Suppose that there exists some eigenfunction ¢ for the first
eigenvalue A1 which satisfies ¢ > 0 almost everywhere on 0Q2. Then A =

% and the constants are eigenfunctions for the first eigenvalue.

Proof : Since ¢ > 0 on 01, the equation 0.7i(—¢) = ¢ almost everywhere
on 0f) implies that 0.7 = —1 almost everywhere on 9¢). Let us observe
then that ¢ + K is also an eigenfunction for every constant K > 0. Indeed
o(p+ K) = o(¢) satisfies

o(6+ K).V(¢) = [V¢| in ©

13



and
o(¢)i(—(¢+ K))=¢+ K

on the boundary. Then, one has

M[@+K) = [[Ve+Kl+ [ o+ K]

[19el+ [ 1o1+Kloa)

This implies, using the fact that ¢ is an eigenfunction, that

ME|Q| = K09

Once one knows that A\ = @ , it is obvious that the constant are eigen-

functions.

3.2 The one dimensional case

Proposition 12 Suppose that Q =|0,1[. Then, the first eigenvalue equals
2. The only eigenfunctions for the first eigenvalue are the constants.

Proof of Proposition 12
We begin to prove that Ay = 2. For that aim, suppose that v €
W, (10, 1[), then for every z €]0, 1]

() = / " ()t

0
o (t)dt

u(x) = —

1
€T

From this one gets that for every = €]0,1]
1

2fule)| < [ (0]at

and integrating over |0, 1]

1 1
2 [ful < [ ]
0 0

This implies that A\; > 2. For the reverse inequality take the sequence

Un = N[0 1] + X[L1-1] +n(l— x)Xp—%,u

14



One has

Uy, = X0, 1] = MX[1-L1 1)

! !/
| =2

Since fol lup| =1—1 — 1, one gets the result.

We now prove that the only eigenfunctions for \j(= 2) are constant
functions.

An eigenfunction ¢ must satisfy

hence

—o'=2

¢'o =|¢/| in ]0, 1

a(0)p(0) = [4(0)]

The equation satisfied by o implies that there exists v € [—1,1], such
that

o(z) =a—2x

Since o has values in [—1, 1], necessarily « = 1. As a consequence o(z) €
| —1,1] for = €]0, 1[, hence ¢/ = 0 in ]0, 1[. Finally ¢ = cte and it is easy to
verify that every constant is a solution of the relaxed problem

1
inf {1+ 160+ o)}
¢eBV(0,1]), [, lgl=1 Jo

4 Properties of the solutions. Necessary condi-
tions on f and the first eigenfunctions
Let f be some continuous function on .

Proposition 13 Suppose that u is a solution for eqy for X > A1, and that
1<qg<N+1. Thenue L*®(Q).

15



Using first part in Proposition 7, one gets that u € L¥ for all k < co. Then
—divo(u) = A + fud™! € L for all s, hence using once more Proposition 7
in its second part, one gets u € L.

Theorem 6 Suppose that for A > A\ there exists a nonnegative solution
to the p.d.e. eqy. Then, if ¢ is some nonnegative eigenfunction for the
eigenvalue A1, [ fo? < 0.

Suppose that A = A1, and that there exists a nontrivial solution to eqy, .

then QF #£ (.

Proof

Let ¢ > 0 be given. Substract the equation satisfied by ¢ from the
one satisfied by u, and multiply by $ which belongs to BV ( since
¢ € L*>). Using Proposition 8 one has

(o) - o)V (=) <0

(u+ €)1
and since
1 L ¢t
m + (U(U)-n)m > 0 on 02

one obtains after integrating over (2 and using generalized Green’s formula
inl:

Ao il g 1
— < 1

( 1)/9 (ute)rt = /fzf(U+6)ql¢ (1)
Let us observe that the right hand side of (11) converges when € goes to

zero, (using the dominated convergence theorem) to the limit — [ w(@)>0 fol.
On the other hand, the left hand side is increasing and nonnegative, hence
q

it is convergent. This implies that % is integrable. Let us denote by «
u

1
the L' function such that ¢¢ = au?~!. Then

/M(w)>0 Jo= /x,u(w)>0 fout™ = /Qf au’™" = /Q fo

)

(In the previous inequalities, one has used ¢ > 1). One has finally obtained
that any nonnegative eigenfunction ¢ for the first eigenvalue A\; satisfies

Jo fo? <O0.

16



Suppose now that A = Ay, let u be a nonnegative, nontrivial solution to
eqy, - Multiplying the equation by u, one gets [, fu? > 0 and since it cannot
be zero because u is not an eigenfunction, one has [, fu? > 0. In particular
Qt #£0.

Let us note that one can have solutions for A = Ay and [, f¢?¢ =0

Suppose that k& > 1, that B(0, k) is a bounded open ball in IR™. We
have already seen that the eigenfunctions are the constants and A\ = %

Let us define o as
—Zif |7 <1
o(z) :{ i || € [L,K]
o satifies |o| < 1, and
0.V(cte) =0

inside €2, and
ofi(—cte) = |cte|

for |z| = k. One has

where

One can check that [ B(0,k) f = 0, and the previous equations prove that
u = cte is solution.

Proposition 14 Let N be an integer, N > 2. Suppose that ¢ is some
nonnegative eigenfunction for Ay and that u is some nonnegative solution
for eqx, A > \1. Then, there exists a € L>°(Q) such that ¢ = aud™".

Proof of Proposition 14.
We begin as in the proof of Theorem 6 : Let us multiply the equation

by and integrate over €). One obtains

(u+ €)1

Lo -0 (irts) + [ (ot +o@ni( S ) +

(u+e)rt (u+ €)1
¢

+ ()\1>\)/Q(u_|_€)q1
—1

Uq
_ /Q e

17



the right hand side tends to [ u(z)>0 f ¢, and using the negativity Of/ (o(u) —o(9)).V (
’ Q

B ¢ . ¢
of /89(—0(u) +o(p)).n (W> and the negativity of (A} — ) /Q g T
one gets that lim._.g / ———— exists. This implies that according to the
o (u+ €)1

monotone convergence theorem of Lebesgue, the function is in L1(€).

¢
(u)a—t
J
Suppose that we have proved that for j < k, o Y € LY(Q), and let
¢k+1 Y

(u+ 5)(q—1)(k+1) )

us multiply the equation in u by One obtains

s 1 Pl
(=, (ot )@ D) = Jm (ot &)@ D)
The right hand side tends to the finite limit [, f¢oy when e — 0. This

¢k+1
implies that S@ DD

k
o0 o0 E+1 1
/ Qg1 < M ap <C (/ Oék+1> |2
Q 1 Jo Q

1

From this one obtains that ([ apy1)®T < C and then %
u

More precisely

= apy1 € LY(Q) and

e L¥(Q).

¢

ud—1

Floolloc
NN

4.1 Properties of the solutions in the one dimensional case.
Some explicit examples

Proposition 15 Suppose that Q =]0,1[, and that u is some nonnegative
solution for eqx, A > Ai. Then, u is bounded from below by a positive
constant.

Proof of Proposition 15
Let us substract the equation satisfied by ¢ to the equation satisfied by

_
(u+ €)1

u, multiply by and integrate over |0, 1[ One obtains

18
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+

1 LV L o)1 o) -1
/0 (o(u) = o(¢)) ((u+€)ql> * (u(l) +e)a-t " (u(0) +€)a1
1 1

+ (M- )\)/0 (

u+e€)d—1
1 uq—l
= / f——-
0o (u+e)1
Using Theorem 6 with ¢ = 1, one sees that the left hand side is the sum

of three negative quantities, the right hand side tends to a finite limit

fxyu($)>0 f, and then, using the Lebesgue’s monotone convergence theo-
1

rem, one obtains that / tends to a finite limit, hence €

. 0 (u+6)‘1_1
L-(]0,1]).

Suppose that one has proved that for k € IN, v *@~1 ¢ L', Mutiplying

q—1

the substracted equation by one gets that

(u + €)kla=1)’

1 1 1 uq—l b1
(/\—/\1)/0 W < —/0 fm < ‘f‘oo‘u—"_eL(k—l)é'
From this one gets that w54~ ¢ L1, finally

| floo ‘
A — A

lu™ T, <

1
This implies that — € L™, finally
u

1

()\ — )\1) (-1
u> | ——

| floo
Examples:

As we shall see in the fifth section, one is able to prove that when ¢ is
subcritical and for A = A1, eq), possesses at least one solution, and for A > A\q
and A sufficiently close to A1, there are at least two solutions . We present
here particular solutions in the following case : 2 =]0,1[, A=A (=2). In a
second time, we present an explicit resolution in the case A > Ay, for which
we exhibit two solutions.
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Let 2 =]0,1[, A = A\ (=2), ¢ < oo: Assume that « is some real in |0, 1],

and
o { c1 on [0,q]

¢y on |a,1]

where ¢ > 0, ¢cg < 0 and

1
/ f=caa+(1—a)ca<0
0

Let us define the function

) (2(1—a)>qi1 on 10.qf

(676}

()7 o ol

= ()T (BT - s,

(&) aCy

One has

where ¢, denotes the Dirac measure on the point «. Then, u is a solution
for the equation
—0' =2+ ful!

ou' = |[v'] on ]0,1]
Indeed o defined by
2
1——z on|0,q]
g = o
-1 ona,1]

satifies o(a) = —1, and then,
ou' = o(a)(uz — u1)de = Jug — u1|da

since ug < uj. Moreover the boundary conditions are satisfied, since o(0) =
1 and o(1) = —1 imply
Uy =0 (0)u1
and
U9 = U(l)(—Ug)
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Suppose now that ¢; <0, ¢a > 0 and ciae + (1 — a)ea < 0. A solution is
given by
1
_2 a—1
() ! on [0,qf
U= “ 1

2c -1
—_— 1
((1—04)62> on o1
Indeed, o defined by

B 1 on [0, o]
Tt 2Z-a) onfa]

is a solution.

Remark 7 As we pointed out in the proof of Theorem 1, the condition
f01 f <0 is not necessary. Suppose that

/1f:cla+(1—oz)02:0
0

with ¢1 > 0, cg < 0. Then, the constant

s a solution for A = A1, since o defined by

2
1——z on[0,q]

g = le%
-1 on [o,1]

satisfies o.u’ = 0 = |u'| and o(1) = —1, and o(0) = 1. This proves that the
condition fol f <0 is optimal when A = .

We now assume that A > A\; = 2, and exhibit two solutions for A suffi-
ciently close to A1. Suppose that

on [0, o]

_J)a
f_{ c2 on [, 1]

where ¢; and ¢y satisfy ¢; > 0, ¢ < 0, and

ca+(1—a)ea <0
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Let us define e = A — 2, and assume that ¢ is small enough in order that

2
e< ——2
«
and .
2
e < —7&] !
a (e — 1)
Define

1

Uu=|—
Jo f
Then we check that v is a solution. Indeed

o(z) = 1—(2+e+cuiz on 0,af
T 1+ -2)2+etcut™t) on o, 1]

is continuous, has values in | — 1, 1[, for = €]0, 1], hence
ou' = ||

in ]0,1[, and o(1) = —1, ¢(0) = 1 imply that the boundary conditions are
satisfied. Finally by construction,

—0' — (24 ¢€) = ful™!
We now present a solution such that fol fu? > 0. Suppose that ¢; > 0,

2(1 — ) 2[0 f

co <0, cia+ (1 —a)e <0, and take € < , €<
o Oz(CQ - 01)

defined by
2 _92 ¢ =
e on [0, af
1

<_(2 + 6)>qil on [a, 1]

C2

, then u

u

solves the problem

5 Non existence results

Theorem 7 Let us suppose that X\ is large. Then, there is no solution to
eqy.
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Proof
Let B be an euclidian ball on which f > 0, and let p* and 1 be solutions of
the eigenvalue problem

W= inf { / |Vul},
u€BV(B), [, lul=1 /BUIB
One knows by the results in section 3 that p* = % and that the positive
constant are minimizers for p*. Suppose that there exists a solution u for
eqx with A > p*. Then

—div(o(u)) —A > 01in B,

with
o(u).Vu = |Vu| on Q.

Integrating this over B, one obtains

—/ o(u).ii > A|B],
0B

which implies since |o(u).77| < 1 that

0B
< 271

A< :
| B

a contradiction.

Remark 8 This has also the following consequence : If eq) possesses a
. . OB
solution then A <inf(g t~0 on B %.
We now prove that the set of A for which eqy possesses a solution is
an intervall. To prove this kind of result, one usually uses an argument of
sub and supersolutions, which is a consequence of the following result : We

suppose here that
fla,u) = flpuf™" + A,

we consider the equation

—div(o) = f(z,u)
{ 0.Vu = |Vu| on QU IN (12)

with ¢ > 1, A > Ay with A; the first eigenvalue for minus the ”1-Laplacian”
on {2.
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Theorem 8 Suppose that there exists w and u which are respectively super
and subsolutions of (12). Suppose in addition that there exists C > 0 such
that

0<u<u<C

Then, there exists a solution to (12) which is such that u < u < 7.

The proof of this result can be found in [14]. It uses essentially perturbed
variational problems and comparison of solutions, as it is done in [23].

To apply this theorem we need to observe first that if there exists a
solution uys for eqy,, and X' > )y, then, there are subsolutions for egq.
Indeed, for € > 0 small, if ¢ is some nonnegative first eigenfunction, €¢ is a
subsolution for egy, since one has o(e¢) = o(¢), and then

—divo(ep) — A=A — A < f(ep)d™?

for € small enough, using the fact that f is bounded.
On the other hand uys is a supersolution for eqy. We prove then that

uy is bounded from below by some subsolution.
/

A
Suppose that N = 1, then, using Proposition 15, uys > 27 and then,

for all constant (eigenfunction) ¢, there exists € > 0 such that uy > €.

1
Suppose that N > 2, then ﬁ > 1 and ¢e-1 is an eigenfunction. Choosing

e < —L— where ¢ = auifl, and « is given by Proposition (14), one has

la &

1
uy > €pat.

6 Some existence’s results in the subcritical case

In all that section we assume that ¢ < 1* = %

Theorem 9 Suppose that Qt and Q= are # () and that every nonnegative
eigenfunction ¢ for the first eigenvalue A\ satisfies [, f¢? < 0. Define

A = inf ([ (vu = Afa) + [ ful)

weBV(Q), [ul1=1, [, flul?=0

and for A > Ay, the two infima

mN) =t ([ (Vul= A+ [l
ueBV(Q), fﬂ flula=—1 JQ aQ
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and
pN= it (T = A+ [l
weBV(Q), [, fluls=1 /@ a0
Then Ay is > 0 and achieved, and for X € [A1, \1 + Aj], mg(A) < 0 and is
achieved, mg(A1) =0, py(A) > 0 and is achieved.

Remark 9 Of course, using the density result in Proposition (2) the in-
fimum defining mg(X), pg(\) and N can be taken on W&’l(Q) in place of
BV (Q).

Proof

We begin to prove that A} is positive and achieved. Suppose that (un)
is a minimizing sequence defining A7, up € Wol 1(Q) One can assume that
u, > 0. Then, the extension of u,, by zero outside Q is bounded in BV (IR").
Extracting from it a subsequence, still denoted wu,, for simplicity, one obtains
that u, — u in BV (IRY) weakly. u is nonnegative and is zero outside Q.
Using lower semicontinuity for the weak topology, one has

[oval= [ val+ [ jul <lim, o [Vl = [Vl
RN Q o0 RN Q

Since ¢ is subcritical, the embedding of BV () into L%(Q)) is compact and
then [, fu? = 0. Suppose that Ay = 0, then, one would get u a nonnegative
eigenfunction for the eigenvalue A; such that [, f|u|? = 0, a contradiction.
Finally Ay > 0. Suppose now that A €A1, A1 + )\C*I[. Let us prove that
mg(X) > —oo. If not, one would have a sequence u, > 0, u, € Wol’l(Q),
such that |u,|1 — oo, and [, |Vun| — A|up|i — —oo. Let us extend w,, by
zero outside €, and define w,, = ‘J‘T”h wy, is a nonnegative bounded sequence
in BV (IRY), which is zero outside of 2. Extracting from it a subsequence,
one gets that it converges to some w € BV (IR"V) weakly. w is zero outside
(, satisfies |w|; = 1 and since ¢ is subcritical [, fw? = 0. In the same time
by lower semicontinuity one has

/\wa+/ \w|—)\/\w|:/ IVw| - A <0,
Q o0 Q RN

which contradicts the assumption A € [A1, A1 + Aj[.
Let us observe that the same arguments prove that every minimizing se-
quence for my(A) is bounded in BV (IRY). Extracting from it a subsequence,
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and using lower semicontinuity for the vague topology, one gets by passing
to the limit, the existence of a minimizer uq(\) for my(A). Observing tha
#1 is
(= Jo fon)
admissible for m4(\) one gets that my(\) < 0 as soon as A > A;. Let us
observe that mg(A1) = 0.

We act for py(A) as for mg(X), more precisely we are able to prove in the
same manner that p,(A) > —oo and it is achieved.

We want to prove that any nonnegative minimizer for my(\) satisfies the
p.d.e.

if ¢ is some nonnegative eigenfunction for the first eigenvalue,

—div(o(u)) — A = —mg(\) fud™, (13)

where |o|~ ) <1, 0.Vu = |Vu| in Q, 0.7iu = —u on 9. For that aim, let
us introduce for ¢ fixed, for € > 0 given and small, the following variational
problem

me(A) = inf {/Q\vu|1+f —A/Q|u\}.

weWy (@), [, fluli=—1

This problem possesses a minimizer, since the functional involved is coercive
on the space Wol’He(Q). Let us observe that lim._,gm(\) = mgy(X). Indeed,
let § > 0 and €y > 0 be given and u be in Wol’HeO(Q), , such that [, flu|? =

—1 and

/\Vu]—)\/ lul < mg(A) + .
Q Q

Then [ |Vu|'™ — [, |Vu| when € — 0, hence lim._om(\) < mgy(\) + 6.
For the reverse inequality, let u. be a nonnegative minimizer for m(\).
Suppose for a while that one has proved that u. is bounded in WhH1¢(Q).
Then, denoting still by u. the extension of u. by zero outside of €, and
extracting from it a subsequence, one has after passing to the limit the
existence of a nonnegative u € BV (IR"), which is zero outside of Q, and
satisfies [, flu|? = —1, (since ¢ is subcritical and using the compactness of
the Sobolev embedding from BV () into L4(2) for Q bounded). By lower
semicontinuity for the weak topology of the BV norm in IRY, one has

/|Vu\+/ \u|:/ Vul gm/ \Vue\He:liimeHO/ Va1,
Q o0 RN RN Q

This implies that
mg(N) < lim, _gm, (V).
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Let u, be a nonnegative minimizer for the problem defining m¢(\). It satis-
fies the following p.d.e.

A
—div(oe(ue)) — = —m.(\) ful™! 14
(o) — 1o = ~mlO) e, (14)
with mL(A) = m(\) + fﬁe Joulte. Let us note that o. = |Vu| 'Vu,

is bounded in L¥(Q) Then, it converges, up to a subsequence, in ev-
ery L*(Q) weakly for all & < oo, towards some o € N;L*(Q). Using
limsup |o¢|1+e < 1, one gets that o € L* with some L* norm less than

1. On the other hand, passing to the limit in (14) one has

—dive — A = —my(\) ful™t.
Multiplying this last equation by u and integrating one obtains

/Q(U'Vu—)\u)+ aQ(—o*~ﬁu) = —mq()\)/quq
= myN = [ (Ful=d)+ [l

From this one gets that o - Vu = |Vu| and o - iu = —u on 99Q. Finally u
satisfies (13).

There remains to prove that the sequence u. is bounded in BV (IRY). It
suffices to establish that is is bounded in L'(£2). Suppose by contradiction
that [, ue — oo. Then, for € small enough [, ue > 1. and then ([ ue)t™e >

Ue

Jq te. By defining we = T one has
Q €

/ Ve[ — A :/ [Vue ™
RN € RN (fue)lJre

Jr~ (V| _
J ue
me(A)
Joue
The limit of the last quantity on the right is negative, finally Vw, is
bounded in L'*¢(Q), in particular w, is bounded in BV (IRY), hence one
may extract from it a subsequence, still denoted we, such that w. — w in

BV (IRY) weakly. Since ¢ is subcritical, one has [, fw? = 0 and by lower
semicontinuity

A

IN
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/ (IVw| — Aw) <0.
RN

This contradicts the choice of A since A € [A1, A1 + A7[, and |w[; = 1. From
this one can conclude that (u.) is bounded in L!(().

As we did for m(\) and mgy(\), one can prove that pg(A) = lime_opc(A).
In order to see that py(A) > 0, let us argue as in the proof of Theorem 1.
One has for € > 0 given

o [ e [ 1L

u+€)l u+e‘11_

Using the Lebesgue dominated convergence theorem, one obtains after pass-
ing to the limit when € goes to zero that

(=) [ [ ot <o

From this one gets that pg(A) > 0 for A > A;. For A = A\ the infimum
defining p, (A1) cannot be zero, because it would contradicts the constraint
Jo fo? < 0. A minimizer for py(A1) provides then a nontrivial solution for
eqy, (up to a mutiplicative constant).

7 Existence’s result in the critical case

We suppose in this section that f € C(Q). Let us recall that the critical

exponent for the Sobolev embedding of W1 () into LF(Q) is 1* = 2.
Before giving the proof of the existence’s results in the critical case, let

us recall the concentration compactness lemma of P.L. Lions [26] in a form

convenient to our setting :

Lemma 1 Suppose that (u,) is a sequence in BV (IRN) which is compactly
supported in a fived compact Q). Suppose that u,, converges weakly in BV(IRN)
to some function u € BV (IRY). Then, there exist a subsequence of u., de-
noted in the same manner, two nonnegative bounded measures u and v,
compactly supported in Q, some numerable set {x;}, i € IN, some sequences
(i) and (v;) of nonnegative reals such that

Vun| = 2> [Vul + ) pida,,
[
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*

lup |V — v = ]u!l* + Zuiémi,
i

in BV (IRN) weakly, with

1
*

;! < K(Na 1):“1

)

Remark 10 Let us note that the weak convergence of |Vu,| towards p im-
plies, since the measures are compactly supported, that

LIvul = [
Q Q
‘/—‘un‘l* _>/*V-
Q Q

and also

Let us define

A = in L vl =xifub+ [ Jul}

 (weBV(@), [, flul™* =0, Juli=1}

Lemma 2 ~
0< A= liimq_m)\; <\

Ty 1xmg(A) < m(X)

Proof of lemma 2

To prove that A* > 0, suppose by contradiction that \* = 0. Let (uy)
be a minimizing sequence for the problem defining A*. One can assume as
usually that u, > 0. It is bounded in L'(£2), hence in BV (Q). Extending
by a now classical way u,, by zero outside of {2, the extension, still denoted
Uy, is bounded in BV (IRY) and using standard arguments, one can extract
from it a subsequence such that u, — u, u > 0 in BV (IRY) weakly. One
has u = 0 outside of 2, [, |u| =1 and by lower semicontinuity

/]RN ‘Vu| < himn—h&-oo /IRN ’vun|

Finally using \* = 0,
| (9ul =l <0 (15)
RN
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and then this quantity is zero and equality holds in the previous inequalities.

In particular
[ IVal =t [ 90|
RN RN

This implies that strong convergence holds in L (Q2) and then, [q flun|'" —
Jo flul*” = 0. But from (15) u must be an eigenfunction for the eigenvalue
A1, a contradiction.

The same process enables us to prove that

. *
himqg)l*)\q > 0.

Indeed, suppose by contradiction that lim, ,;+A; = 0. Then, there exists
ug € Wyt (), [ fud =0, ug >0, ugly =1 such that

[ (90l = Mifug) = 0

The extension of u, by zero outside of Q is bounded in BV (IRY), hence, by
extracting a subsequence, one gets that there exists u € BV (IR"V) such that
u > 0 is a weak limit of uq, u is zero outside of Q, [, u = 1, and by lower

semicontinuity
/ |Vu|—>\1/ lu| < 0.
RN Q

One obtains as in the previous proof that

/IRN |Vu| = limg_1+ /]RN |V,

and then [, fud =0 = [q ful” = 0, but the previous identities prove that
u is an eigenfunction for the eigenvalue A1, a contradiction. To prove that
Hqﬂ*/\; <X, let 6§ >0and v >0bein Wol’l(Q) such that [ ful” =0,
luly =1, and

/|Vu]—)\1§)\*+5
Q

Let g, be a sequence converging to 1%, such that A} — limsup A7, and let
us consider the sets

N = {n, ,/quq":0}u{n,/quq"<0}u{n,/ﬂfuq”>0}
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Suppose that there exists an infinite sequence ¢, — 1* such that [, fu? =0,
then the result is obvious. If not there exists an infinite sequence ¢, — 1*
such that [, fu? > 0, either there exists an infinite sequence such that
Jo fud» < 0. Suppose that we are in the first case and define o(gy) as the
real between 0 and 1, such that

alga) | fut + (1= ala) [ fo =o0.
Finally define
(a(an)u + (1~ algn))6™) o
[(@(gn)ut + (1 — a(gn))dt)an |y

One has v, € BV (Q), [ fvd* = 0 and v, converges strongly in BV towards
u . As a consequence

n =

limg, 1= Ay < lmJy, »(vn) — Iy, (u) = A

Suppose that we are in the second case, hence there exists an infinite se-
quence ¢y, ¢n — 1*, such that [, fu? < 0. Since f is positive somewhere,
let v be in Wy () such that Jo fo!" > 0. Then, for ¢ sufficiently close to
1*, one has [, fv? > 0. Let then a(g,) as the real between 0 and 1 such
that

alga) | Fut+ (1=a(g.) [ Jo =0,

and define )
(algn)u™ + (1 = algn))v™)om
(@(ga)utn + (1= alga))vo) o |
One has v, € BV(Q), v, tends strongly to u in BV (), [, fvl* =0, and we
get the same conclusion as in the first case. Finally one has obtained that
limg 1+ Ay <A™
To end the proof of Lemma 2, let us note that one always has:

n =

m(A) = Tmg—1-mg(N)

Indeed, let § > 0 be given, and u be such that u € Wol’l(ﬂ), Jo ful” = -1,
and

| (9ul = Al < m() +
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u
Since [, flu|? — —1 when ¢ goes to 1*, vy = - converges to u

(= Jo flul9)s
in BV () strongly and is admissible for the problem defining m,(X). The
same remarks hold true for p,(\) and p(X).

Theorem 10 Suppose that Q, Q= are # 0, that [ f¢*" < 0 for all non-
negative first eigenfunction ¢, and that X is close enough to A1, then m(\)
is achieved and m(X\) = limg_,1xmgy(X). Suppose that

PODK (N, 1)(sup /)7 < 1.
Then, for X close to A1, p(A) is achieved and lim py(X) = p(X).

Proof of theorem 10
We define

m = limg_,1.mq(A)
m < m by Lemma 2, (possibly m = —o0). Let u, be a nonnegative mini-
mizer for mgy(X). u, satisfies the p.d.e.

—divo(uy) — A= —mq()\)fug_l (16)

Suppose for a while that the extension of u, by zero outside of § is bounded
in BV(IRY). Then m > —oo. By extracting a subsequence, one obtains
that u, — u in BV(RY), u = 0 outside of Q. The sequence o(u,) is
bounded in L*(2) with a norm less than 1, hence one may extract from it
a subsequence, still denoted o(ug), such that o(u,) tends weakly in L°(Q)
towards o. ¢ has L norm less than 1 and one has

—div(o) = A = —mfu?™t, (17)

Let 1 , v be bounded measures on RY, z; € RN, y; and v; as given in
Lemma 1. Let us multiply equation (16) by u,p, where ¢ € D(IRY), and
integrate over §2. Passing to the limit, one obtains

/Q (1 — Mugp) — /Q 0.Vipu = —inf /Q Fuo+ Sl aela). (1)

On the other hand, multiplying equation (17) by uep, integrating over € and
substracting the result to (18), one obtains
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uw—oNVu= —mz v f(x4)0; (19)

where the equation holds in €.
Let us remark here that when u € BV and N > 2 the measure Vu is
orthogonal to any Dirac mass (see for example [13]). Let then

p=g|Vul + p-

be the Lebesgue Radon Nykodym decomposition of u into a measure abso-
lutely continuous with respect to |Vu| and a measure orthogonal to it. Let
us observe that g > 1, and pu > 3", u;6;, more precisally

pt = —m Y v f ()0
g|Vu| = o0.Vu

One finally gets that
pt = > s =—m>  vif(xi)da,
i i

with g > p;. On another hand |o|s < 1 implies that (g — 1)|Vu| = 0 and
po=limg_1x|Vuy| = |Vu| + 3, pid;. One also has

/qul* +Zf(90z')%‘ =-1

and
pi = —m; f(z;).

As a consequence if f(x;) < 0, u}, p; are zero, and also v; = 0, so we are
done. Then f(x;) > 0 for all ¢ and then

Jo fut = —1—=3vif(z) < -1,

m(= [yt < [ 9= [ e=m= = m(= [ )

From this one obtains that

L
*

()= [ fuy < —m)(= [ fuy.
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This implies that m = m()\) and [, fu!” = —1. Finally u realizes the
minimum in m(A).

There remains to prove that u, is bounded in BV (IR"). For that aim,
we prove the claim

Claim: One has limy_,y,m(\) = 0.

Proof of the claim :

One already has m(\) < m(A1) for A > A\;. Now let uy be in Wol’l(Q),
uy > 0, such that [, ful” = —1 and

J/\(U)\) < m()\) + (/\ — )\1)

uy
[uxl1

ative and belongs to VVO1 1(Q) Extending it by zero outside Q, extracting
from it a subsequence, one obtains that there exists w € BV (IRV), w > 0,
such that w = 0 outside of 2, |w|; = 1. Using lower semicontinuity, one has

Suppose that |uy|1 — +oo, and define wy = . w) is bounded, nonneg-

og/ V| — A §li7m)ﬁ)\1/ Vs — A <0
RN RN

This implies both that [ |[Vw| = A1 and limy_.», [q|Vwy| = [q|Vw|. Then
the convergence of wy is strong in L' (), and Jo fw!'” = 0. This contradicts
the assumption on the eigenfunctions for the eigenvalue ;.

Finally uy is bounded in WO1 1(Q) and by extracting from it a subse-
quence, using lower semicontinuity one gets that

og/ ]Vu\—/\l/\u\gm()\l):o
RN Q

This yields the desired result.
As a consequence of the claim one may choose A close enough to Aq in
order that

Im(\)| K (N, 1)sup = < 1.
Let us prove under this assumption that (u,) is bounded in L!(£2). If not,

|ug|1 tends to infinity. Define then w, = ﬁ The sequence (wg) is bounded

in BV (IRY), hence one can extract from it a subsequence such that w, — w
in BV(IRV). One has w = 0 outside of Q, |w|; = 1, and

[ (Vwl = A <0.
]RN
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Suppose first that [ fw!'” =0, then, this would contradict the choice of X
with respect to A*. If one had [, fw'™ > 0, one would have

p(\) (/wal*)f* <[ wul=a [ <o

a contradiction, since p(\) > 0.

Finally suppose that [, fw!'™ < 0. Applying the concentration compact-
ness principle of P.L. Lions, [26] there exist some nonnegative measures p
and v, some numerable set z;, z; € 2, some nonnegative numbers u; and v;
such that

[Vwx| = i > [Vl + Y pide,

(2

in BV (IR"N) weakly, and

url" = v = Jwl "+ vids,
i

in BV (IR"N) weakly, with

1
v" < K(N,1)u;.

)

In particular
m)\f/ wl*i*g/ wa)\/wgf ;-
W [ g0y < [Vl =3 [l < =S
Let us note that one also has
| fot + Sufa) 0.
i

As a consequence one gets

m(N) (X vif (a0)) ™ < =3 i

i

[

hence
L 1
S e € —m) (X v (@) < —m(N) sup fEE(N D) Y e
By the assumption on —m(\) one obtains that >, u; = 0, hence v; = 0 and

also [, fw!'” =0, once more a contradiction. One has finally obtained that
(uq) is bounded in L' and then in BV (IRY).
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We now prove the second part of Theorem 10
Since p(A) decreases when A increases, supposing that

pODE(N, 1)sup f7+ < 1,
the same inequality holds with A in place of A;. Let us define
Zj = mq—d*pq()\) S p()\)

Let us note that p is a real nonnegative number. Let u, be a solution for
Pg(A). uq satisfies the following p.d.e.

o(uq).Vu, = |Vug|, on QU OQ (20)

{ —divo(ug) =X = pg(A)ful™" ug>0in €,
Following the first part of the proof, one can prove that u, is bounded in
BV (IRYN). Extracting from it a subsequence, and passing to the limit in
the p.d.e. satisfied by u,, one gets that there exists u € BV(IRY), u igs
nonnegative, is zero outside of  and there exists o, weak limit of o(u,) in
L, |o| <1, such that the equation

—dive — X = pfut’ 7! (21)

holds. By the concentration compactness lemma of P.L.Lions, there exist
some nonnegative measures p and v, some numerable set x;, x; € (), some
nonnegative numbers p; and v; such that

[Vug| = p > [Vl + > pibe,
7

in BV (IR"V) weakly, and

*

fug| " = v = Jul" + Y vida,
i

in BV (IR"N) weakly, with

1
*

1
v

Multiply equation (20) by uge with ¢ € D(IRY) and mutiply equation (21)
by up. Substracting the two, one gets
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p—oNu=py vif(z:)d. (22)
Let us remark first that p # 0. If p = 0 one would have
—dive — A =0

and since p = 0.Vu on Q U I and |o| < 1, one has 0.Vu = |Vu| on
QU 09, hence from (22), |[Vuy| — |Vu| on RY weakly. From this one gets
that [, fu'” =1, and wu is an eigenfunction for some A. If A\ > \;, since
u is nonnegative, this contradicts the results in section 1. If A\ = Ay the
condition [, ful” =1 is a contradiction.

Finally p # 0. By the Lebesgue decomposition, one can write

p=g|Vu| + p*

with ¢ > 1 and pu' a measure orthogonal to Vu. Then, one derives from
(22) that

pt = p Y vif (i),
g|Vu| = 0.Vu.
One finally gets that

P = b
)

for some g > p1;. On another hand |o|s < 1 implies that (g — 1)|Vu| =0

and p = limgp«|Vuy| = [Vu| + Y, id;. Suppose that f(z;) < 0, then,

the previous calculation implies that p, = 0, hence p; = 0 and v; also.

Define vy = >, v; f(x;). By the previous remark vy > 0. Let us prove that
1

1—

vy e[0,1+ (%) i | = [0,7]. For that aim, let us recall the relation

obtained by passing to the limit in the relation [, Jul =1.

/qul* —|—Vf =1.

If [ ful” > 0vp €[0,1]. If [ fu'" <0, then

m(= [ puyt< [19ul+ [l [ eom=p0] )
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From this one gets

pl= [ Ju) < —m(= [ fu).

This yields the desired result, using vy =1 — [ ful”. Since v; f(x;) > 0 for
all 7, one has v; f(z;) < v for all 7, and then

IN

prif ()
vi f ()
v

P <sziy(ﬁtz)> 1- (vif () TF 7L~ T

1 1
PK (N, 1)sup f1% iy~ 1%

i

< P

v

IN

IN

el
I
—_
+
—
|
3
N—
7 N
-
! [
S
N——
—
i
IN

Using v~ (14 ="), one finally gets

wi < p(l+ i)K(]\L 1) sup 75 p; < S
b

for some § < 1. One obtains that u; = 0, hence v; = 0, the convergence of
ug towards u in BV (IRY) is tight and then [, ful’ =1, p=p(\) , uis a
minimizer for p(\) and it satisfies eqy, up to a constant.

8 Appendix : Some complements on weakly al-
most 1-harmonic functions

We propose here to give a quick proof of Proposition 7 and 8 that we recall
here

Proposition 16 Suppose that Q is a bounded open set in RN, which is
piecewise C' and that u is almost 1-harmonic on ), then u € LY(Q) for
all t < oo. If in addition —div(c) = f € L9(Q) for some ¢ > N, then
ue L>®(Q).

Proposition 17 Suppose that u and ¢ are nonnegative in BV ()N L>(£2),
and are almost weakly 1 harmonic in Q. Then for all € > 0, and for all
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Proof of Proposition 7
Let us define for M > 0 the truncation v as

if <M
uM:{ u if |ul <

% if |u| > M

One can observe that u™ is almost 1-harmonic and o (u).VuM = |VuM| in
QU 0. Indeed, let u. be as in Proposition3. One has

UE(UE)-vué\/[ = ‘V(uy) ’H_E

in Q. The sequence uM is bounded in W'T¢(Q). It converges to u™ in

LY(9), hence uM € BV(Q) and v — uM in BV weakly. Using lower
semi-continuity,

Ve < lim oV (ulh)]T
= lim,_goc(uc).VuM
= o(u).VuM,
the last equality being a consequence of generalized Green’s formula in
Proposition 1. Since |o(u)| < 1, one has obtained that o(u).Vu™ = |VuM|
in 2. Suppose now that x € 9 is such that u(x) # 0, then o(u).7i(z) = —1

and also
o(u)(@).iu (z) = —[u™ (z)|

Let u be a solution of —div(c) = f € LI(Q2), where o(u).Vu = |Vul in
Q U 09, multiply the equation by |u™[""~1uM and integrate over Q. One
obtains using Proposition 6

L9ttt [t = [ gttt
Q o0 Q

Let C be some Poincare’s constant for the Sobolev embedding from VVO1 a (Q)
into L' (Q). Then, for all u € BV (Q),

(for) " = (freut+ )
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Let m be some positive number and G, be defined as
G ={z € Q,|f(x)| > m}.

Choose m large enough in order that
1
v < 56

Then one gets

1
([rn0) " <o (m [ W ([ 0
G—Gm

One obtains letting M go to infinity that u € L (Q), with

1

1 (/ |u’(1*)2>1* < Cm/ ‘u|1*
2 \Ja Q

Iterating this process, one gets that |u|)" e LY(Q) for all n, and then

u € LY(Q) for all t < co.

We suppose now that f € L9 for some ¢ > N. Let us multiply the
equation —div(c) = f by |[uM|*~1uM, where u™ denotes the truncation of
u at the level M. Let k be some integer > 1. One obtains after integrating

over )
J R e TR A A e
Q o0 Q

e e the conjugate of q. Using Poincare’s inequality one gets
Let ¢’ be th jugate of ¢q. Using Poi ’s inequality get

o\ 1
||UM|kq/|}7 1% < |f|q |uM|kq’ q’
Q - C \Ja

with some universal constant C'. Taking k& = }]—f and passing to the limit

(1*)?

1x
when M — 400 one gets both that w € L ¢ and |u|< € BV (Q) with

()" (4 )

Iterating this process, and defining

I\
aq_
*

oo (for )
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one gets o
Qpt1 < ﬁK Qn
/

with 0 = (%)q and K = f—i < 1. From this one obtains

K"—1
Opy1 < B E-T ayg.
Finally v € L* and
X T
Julse < BTF [l
Proof of Proposition 8 .

Let ¢ and u,, as in the proof of Proposition 3. Denote by ¢F and u}
the positive parts of ¢. and u.. Using Young’s inequality one has

YN (D ( L |V¢€|1+6—V¢€.Je(ue)+€|Vue|1+6> >0
(ud + A1 \1+e€ 1+e -
and
(o) ( 1 1+ € 1+)
Bez -1 € ‘- e-Oc\Pe € ¢ >
= ar e (T Vel ™ = Vueod00 + T 190 ) 2 0

(If k = 1, replace ¢ by ¢..) On the other hand one has

+\k + k-1
(0e(Pe) —0oe(ue)) .V <( @) ) = Mo (|v¢6|1JrE - Ue(UE)‘Vd)E)

ud 4 N1 (ud 4+ N1
(¢:—)k3ign+ue €
— (1 — Q)W (\Vue\l"' — U€(¢e).vue>

= A+ BesignTu,
+yk—1 (ki
. (|V¢e|1+e+Vu€|1+€>< k(91) (g — 1)(6F)Fsign u)

1+e (ud + A)a-1 (ud + A)9
k(o)1 — 1)(signtu)(dF)*
Using the fact that (9) (g = D{sign™uc)(¢c) is bounded in
(ud +A)a-t (ud +A)e

L*>(Q) and |V | 7€ + |[Vu | € is bounded in L'(£2) one gets that the weak

+\k
limit in BV (Q) of (oe(¢e) — oe(ue)) 'v((uj‘@:))\)q—l) is nonnegative. Ob-
(6)" ¢
serve now that the sequence ———"—— tends to ————— in (BV N
(ud + A)a-t (u+ )4

L*>°)(92) weakly. Since o¢(¢e) —0e(ue) tends to o(¢)—o(u) in L9 for all ¢ < oo
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and divo(¢.) — divo(uc) tends to div(c(¢) — o(u)) in LY, one gets that

(6)" ¢
(0c(be) — oe(ue)) .V <(u€++)\)ql> tends to (o(¢)—0o(u)).V ((u—i—)\)q—1>

One has obtained the result.
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