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Abstract

In this paper we study necessary and sufficient conditions on f and
the first eigenfunctions for the 1-Laplacian, for equations of the form{

−div(σ)− λ = fuq−1 u ≥ 0 in Ω,
σ · ∇u = |∇u|, |σ|L∞(Ω) ≤ 1, u ∈W 1,1

0 (Ω)

when q ≤ N
N−1 and λ ≥ λ1, λ1 is the first eigenvalue for the 1-

Laplacian.

1 Introduction

In this paper we are interested in the existence of solutions for the following
partial differential equation{

−div(σ)− λ = fuq−1, u ≥ 0 in Ω,
σ · ∇u = |∇u|, |σ|L∞(Ω) ≤ 1, u ∈W 1,1

0 (Ω)
(1)

where Ω is some bounded domain in IRN , which is piecewise C1 and f ∈
C(Ω) ∩ L∞(Ω).

The results presented here extend to the case where p = 1 the one
obtained in [12] for the case p > 1.

Previous results about this type of p.d.e. have been developped in [13].
They concern the case where the functional Jλ defined by

Jλ(u) =
∫

Ω
(|∇u| − λ|u|)

is coercive. This means, with the notations here employed, that λ < λ1,
where
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λ1 = inf
u∈W 1,1

0 (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|} (2)

The properties of λ1, called first eigenvalue for the 1-Laplacian and of
the ”minimizers” of (2) are developped in section 2.

The difficulties here are of several types
1) The solutions of (1) are obtained as minima of functionals which are

non coercive. This difficulty can be overcome by using a process borrowed
to Ouyang [29] in the case of the usual Laplacian and to Birindelli Demengel
in [12] for the p-Laplacian.

2) As in the case of coercive problems in BV (Ω), the lack of compactness
of the trace map does not permit to ensure that the boundary condition
u = 0 holds. This leads to introduce a relaxed version of the variational
functional that we minimize, for which one is able to prove the existence of
a minimizer. This relaxed term is responsible of the weakened version of the
homogeneous boundary conditions ”σ.~nu = −|u| on ∂Ω” which appears in
equation (5) later.

3) The solutions that we obtain are minima of nondifferentiable func-
tionals, hence difficulty occurs when one tries to exhibit a partial differential
equation satisfied by u. The usual process used to find the p.d.e. associ-
ated to BV functionals consists in using duality theory. Unfortunately, this
cannot be employed here because the constraint

∫
Ω f |u|q = 1 is not a con-

vex constraint. In order to overcome this, one can use an approximation
by means of a functional defined and coercive on W 1,1+ε

0 (Ω), ε > 0. The
following steps consists in letting ε go to zero.

4) In the critical case, additional difficulties occur when passing to the
limit : The existence’s result can finally be achieved by using an adaptation
of the famous concentration compactness principle of P.L. Lions [26].

Let us make a few remarks and precisions about the setting : First, we
need to extend the definition of the p.d.e. (1 ) in order that it makes sense
for functions in BV (Ω).

Proposition 1 Suppose that Ω is some bounded domain in IRN whose bound-
ary is piecewise C1. Suppose that u ∈ BV (Ω) and σ ∈ L∞(Ω, IRN ), is such
that div σ ∈ LN (Ω). We define the distribution σ · ∇u by the following
1) For every ϕ ∈ D(Ω)

〈σ · ∇u, ϕ〉 = −
∫

Ω
div(σ)uϕ−

∫
Ω
σ · ∇(ϕ)u (3)
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The distribution σ.∇u hence defined is a bounded measure in Ω, absolutely
continuous with respect to |∇u|, with

|σ · ∇u| ≤ |∇u||σ|∞
2) The following generalized Green’s formula holds for ϕ ∈ D(IRN )

〈σ · ∇u, ϕ〉 = −
∫

Ω
div(σ)uϕ−

∫
Ω

(σ · ∇ϕ)u+
∫
∂Ω
σ · ~nuϕ (4)

where ~n denotes the unit outer normal to ∂Ω.
3) Define

σ · (∇u)s = σ.∇u− σ · ∇uac,

where ∇uac and ∇us denote the absolutely continuous and singular part of
∇u. Then, σ.(∇u)s is singular and

|σ · (∇u)s| ≤ |(∇u)s||σ|∞

The proof of Proposition 1 can be founded in [34], [13].

We shall say that u ≥ 0, u ∈ BV (Ω) satisfies (1), if
−divσ − λ = fuq−1 u ≥ 0 in Ω,
σ · ∇u = |∇u|, in Ω
σ · ~n(−u) = u on ∂Ω

(5)

We shall denote in the sequel the equation (5) as eqλ.

Remark 1 Suppose that u ∈ BV (Ω) and define ũ by

ũ =

{
u in Ω
0 in IRN\Ω

Then, ũ ∈ BV (IRN ), with

∇ũ = ∇uχΩ + (−u~n)δ∂Ω

with δ∂Ω the uniform Dirac measure on ∂Ω. and

|∇ũ| = |∇u|χΩ + |u|δ∂Ω.
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Finally, let us define the measure σ.∇ũ on Ω ∪ ∂Ω as

σ.∇ũ = σ.∇uχΩ + σ.~n(−u)δ∂Ω

It satisfies
σ · ∇ũ = |∇ũ| on Ω ∪ ∂Ω

iff {
σ · ∇u = |∇u| in Ω, |σ|L∞(Ω) ≤ 1,
σ · ~n(−u) = u on ∂Ω

(6)

In the sequel we shall drop the tilde on u and say that σ.∇u = |∇u| on
Ω ∪ ∂Ω as soon as (6) is satified.

Remark 2 Let us observe that except if λ = λ1, we do not need to precise
that we look for nontrivial solutions. Indeed, 0 is a solution if and only if
there exists some σ, |σ|∞ ≤ 1 and −div(σ)−λ = 0. This cannot happen for
λ > λ1 since one has, multiplying by any v ∈ BV (Ω), v ≥ 0, v 6= 0

λ

∫
Ω
v =

∫
Ω
σ · ∇v −

∫
∂Ω
σ.~nv ≤

∫
Ω∪∂Ω

|∇v|

since |σ|∞ ≤ 1, using Proposition 1. Dividing by
∫

Ω v one gets that λ ≤ λ1.

The solutions of such equations are particular case of what we called
”almost weakly 1-harmonic functions”, defined in [15] :

Definition 1 Let Ω be a bounded domain in IRN , piecewise C1. u ∈ BV (Ω)
is said to be weakly almost 1- harmonic if there exists σ ∈ L∞(Ω), |σ|∞ ≤ 1,
div(σ) ∈ LN (Ω) and

σ.∇u = |∇u|

on Ω ∪ ∂Ω.

The main properties of such functions which are required in this paper
are enumerated in Section 2.

We now present the results here enclosed. First, we prove some necessary
conditions on the solution when it exists, and the consequences on f .

Let us define the sets Ω+ and Ω− by

Ω+ = {x ∈ Ω, f(x) > 0}

Ω− = {x ∈ Ω, f(x) < 0}.

4



Let us denote by K(N, 1) the best constant for the Sobolev embedding from
W 1,1(IRN ) in L1?(IRN ). This constant has been computed by Aubin [7],
Talenti [36] and has value K(N, 1) = |SN |

−1
N N−1+ 1

N .

Theorem 1 Suppose that there exists a (nontrivial) solution to eqλ, then

• 1 For λ > λ1, Ω− 6= ∅, and for all first eigenfunction φ,
∫

Ω f |φ|q < 0.

• 2. For λ = λ1, Ω+ 6= ∅.

Remark 3 In the case where N = 2 and Ω is a regular convex domain, it
is known that there is uniqueness of the first eigenfunction (up to a con-
stant). This is a consequence of the uniqueness of the Cheeger set under
these conditions. [7], [10], [3],[4], [30], [32]

The second result concerns the nonexistence for λ large and the fact that
the set of λ for which there exists a solution is an intervall.

Theorem 2 Suppose that N ≥ 1, and that q ≤ 1? = N
N−1 . Then, there

exists λ? such that for λ > λ? no solution exists for eqλ. Moreover, the set
of λ > λ1 for which eqλ has a solution is an intervall.

We now precise the existence’s result in the subcritical case :

Theorem 3 Suppose that N ≥ 1, Ω+ and Ω− 6= ∅, q < 1?, and
∫

Ω f |φ|q < 0
for all first eigenfunction φ. Define

mq(λ) = inf
u∈W 1,1

0 (Ω),
∫

Ω
f |u|q=−1

{Jλ(u)} = inf
u∈BV (Ω),

∫
Ω
f |u|q=−1

{Jλ(u)+
∫
∂Ω
|u|}

and

pq(λ) = inf
u∈W 1,1

0 (Ω),
∫

Ω
f |u|q=1

{Jλ(u)} = inf
u∈BV (Ω),

∫
Ω
f |u|q=1

{Jλ(u) +
∫
∂Ω
|u|}

Then, for λ sufficiently close to λ1, λ > λ1, mq(λ) and pq(λ) possess each
at least one solution, which is, up to a multiplicative constant, a solution to
the p.d.e. eqλ. For λ = λ1, pq(λ1) provides, up to a multiplicative constant,
a nontrivial solution to eqλ1.
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Remark 4 We shall denote as Jλ,r the relaxed form of Jλ, Jλ,r(u) = Jλ(u)+∫
∂Ω |u| for u ∈ BV (Ω). (See[34], [35] for a more general definition of the

relaxed formulation).

Theorem 4 Suppose that N ≥ 2, that Ω+ and Ω− 6= ∅, and that
∫

Ω fφ
1? <

0 for all first eigenfunction φ. Suppose also that f ∈ C(Ω). Define

m(λ) = inf
u∈W 1,1

0 (Ω),
∫

Ω
f |u|1?=−1

{Jλ(u)} = inf
u∈BV (Ω),

∫
Ω
f |u|1?=−1

{Jλ(u)+
∫
∂Ω
|u|}

and

p(λ) = inf
u∈W 1,1

0 (Ω),
∫

Ω
f |u|1?=1

{Jλ(u)} = inf
u∈BV (Ω),

∫
Ω
f |u|1?=1

{Jλ(u) +
∫
∂Ω
|u|}

Then, for λ > λ1 , and for λ sufficiently close to λ1, m(λ) possesses at least
one nonnegative solution which is, up to a multiplicative constant, a solution
for eqλ.
Suppose that

p(λ1)K(N, 1)(sup
Ω
f)

1
1? < 1,

then, for λ sufficiently close to λ1, λ ≥ λ1, p(λ) possesses a solution which
is also, up to a multiplicative constant, a (nontrivial) nonnegative solution
to the p.d.e. eqλ.

The plan of this paper is as follows :
In section 2 we give the results about almost weakly 1 harmonic functions

which we shall need here. In the third section we present some existence’s
result concerning the first eigenvalue and corresponding eigenfunctions, we
give some properties of the solutions when they exist, and we exhibit ex-
plicit particular solutions in the one dimensional case. The fourth section is
devoted to the necessary part, as stated in Theorem 1, and to the proof of
Theorem 2.

Section 5 and Section 6 are respectively devoted to the proofs of Theo-
rems 3 and 4.

We end this section by recalling a density result which is classical in the
theory of BV functions, a result that we shall frequently use :
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Proposition 2 Suppose that Ω is some bounded domain in IRN whose bound-
ary is piecewise C1 and that u ∈ BV (Ω). Then, there exists a sequence
un ∈W 1,1

0 (Ω) ∩ C∞(Ω), such that∫
Ω
|un − u|k → 0

for all k ≤ 1?, and ∫
Ω
|∇un| →

∫
Ω
|∇u|+

∫
∂Ω
|u|.

2 Functions weakly almost 1 harmonic

In this section we give some of the properties of almost 1-harmonic functions
which will be useful to obtain existence and non existence’s results herein.

The properties which follow are all consequences of a technical approxi-
mation result which permits in some sense to work with BV functions which
are almost 1-harmonic as if they belong to the space W 1,1.

Proposition 3 Suppose that Ω is a bounded open set in IRN , which is piece-
wise C1 and that u ∈ BV (Ω). Suppose that u is almost 1-harmonic. Then,
there exists a sequence (uε) in W 1,1+ε

0 (Ω), such that uε ⇀ u in BV (Ω)
tightly, more precisely ∫

Ω
|uε − u|q → 0,

for all q < 1? and ∫
Ω
|∇uε|1+ε →

∫
Ω
|∇u|+

∫
∂Ω
|u|.

Moreover if σ is given by proposition 1 , σε ⇀ σ in Lq(Ω) for all q <∞ and
div(σε)− divσ tends to zero in LN (Ω).

This result permits to prove the results which follow.
Some of the proofs are detailed in [15]. For others, and for convenience

of the reader, we have given an outline of their proof in the appendix. It is
the case for the L∞ bound type result (Proposition6) and for the Picone’s
type inequality (Proposition7).
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Proposition 4 Suppose that u is weakly almost 1-harmonic, then u+ and
u− are also weakly almost 1-harmonic, and

σ(u).∇u+ = |∇u+|

σ(u).∇(−u−) = |∇u−|

on Ω ∪ ∂Ω.

Proposition 5 (Weak Comparison Principle). Suppose that u1 and u2 are
in BV (Ω) and almost 1 harmonic in Ω. Suppose also that

−div(σ(u1)) = f1 > f2 = −div(σ(u2))

(in the sense that f1(x) > f2(x) for almost every x ∈ Ω. Then

u1 ≥ u2

in Ω.

Proposition 6 Suppose that u ∈ BV (Ω)∩L∞(Ω)is weakly almost 1-harmonic.
Then for all k ∈ IN, |u|k−1u is also almost 1-harmonic and

σ(u).∇(|u|k−1u) = |∇(|u|k−1u)|

Proposition 7 Suppose that u is almost weakly 1 harmonic in Ω, then u ∈
Lt(Ω) for all t < ∞. If moreover div(σ(u)) ∈ Lq(Ω) for some q > N , then
u ∈ L∞(Ω).

We end this enumeration by some technical result which will be a key in-
gredient for the necessary part in theorem 1

Proposition 8 Suppose that u and φ are nonnegative in BV (Ω) ∩ L∞(Ω),
and are almost weakly 1 harmonic in Ω. Then for all ε > 0, and for all
k ≥ 1, q ≥ 1,

(σ(u)− σ(φ)).∇
(

φk

(u+ ε)q−1

)
≤ 0
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3 On the first eigenvalue for the 1-Laplacian

3.1 The case where N ≥ 2

Let Ω be a bounded smooth domain in IRN . Let us define the first eigenvalue
of ”minus the 1-Laplacian ” as follows

λ1 = inf
u∈W 1,1

0 (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|} (7)

The existence of a minimizer for λ1 as well as the existence of a p.d.e.
satisfied by this minimizer is given in the following

Theorem 5 One has

λ1 = inf
u∈W 1,1

0 (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|} = inf

u∈BV (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|+

∫
∂Ω
|u|} (8)

and the infimum on the right hand side above is achieved. Moreover among
the minimizers, one of them is nonnegative and satisfies the p.d.e. : ∃σ(φ) ∈
L∞(Ω, IRN ) such that

−divσ(φ) + (−λ1) = 0
σ(φ).∇φ = |∇φ| in Ω, |σ(φ)|∞ ≤ 1
−σ(φ).~nφ = φ on ∂Ω

(9)

Proof of theorem 5
We prove first that

inf
u∈W 1,1

0 (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|} = inf

u∈BV (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|+

∫
∂Ω
|u|}

One obviously has

inf
u∈W 1,1

0 (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|} ≥ inf

u∈BV (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|+

∫
∂Ω
|u|}

For the reverse inequality, let δ > 0 be given, and u0 be in BV (Ω), such
that

∫
Ω |u0| = 1 and

∫
Ω
|∇u0|+

∫
∂Ω
|u0| ≤ inf

u∈BV (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|+

∫
∂Ω
|u|}+ δ
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Using the density result as stated in Proposition 2, there exists a sequence
un ∈ W 1,1

0 (Ω), which is such that
∫

Ω |un − u0| → 0, and
∫

Ω |∇un| →∫
Ω |∇u0| +

∫
∂Ω |u0|. Taking vn =

un∫
Ω |un|

, one has a sequence vn which

converges towards u in the sense that
∫

Ω |∇vn| →
∫

Ω |∇u0|+
∫
∂Ω |u0|.

This implies that

inf
u∈W 1,1

0 (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|} = inf

u∈BV (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|+

∫
∂Ω
|u|}.

We now prove that there exists a minimizer for

inf
u∈BV (Ω),

∫
Ω
|u|=1
{
∫

Ω
|∇u|+

∫
∂Ω
|u|}.

Let (un)n be a minimizing sequence for this problem. Then, the extension of
un by zero outside of Ω is bounded in BV (IRN ). Hence, one can extract from
it a subsequence, still denoted un, such that un ⇀ u in BV (IRN ) weakly.
Obviously u = 0 ouside of Ω. Using lower semicontinuity, one has∫

IRN
|∇u| ≤ limn→∞

∫
IRN
|∇un| = λ1

By the compactness of the Sobolev embedding from BV (Ω) into L1(Ω),
one has |u|1 = 1. Since u = 0 outside of Ω, one has ∇u = (−u)~nδ∂Ω on ∂Ω,
and then

∫
IRN |∇u| =

∫
Ω |∇u|+

∫
∂Ω |u| and u is a solution for (8).

In order to prove that u satisfies (9), let us consider the variational
formulation

λε = inf
u∈W 1,1+ε

0 (Ω),
∫

Ω
|u|=1
{
∫

Ω
|∇u|1+ε}.

Since |∇|u|| = |∇u|, and
∫

Ω |u| ≥
∫

Ω u, one has

λε = inf
u∈W 1,1+ε

0 (Ω),
∫

Ω
u=1
{
∫

Ω
|∇u|1+ε}.

It is clear that limε→0λ
ε ≤ λ1. On the other hand, the problem defining

λε possesses a solution uε which is nonnegative and satisfies the p.d.e.

−div(σε(uε))− λε = 0

where
σε = |∇uε|ε−1∇uε.
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Since
∫
IRN |∇uε|1+ε = λε and

∫
Ω |uε| = 1, the sequence (uε) is bounded in

BV (IRN ), and by extracting from it a subsequence,- still denoted (uε)- one
gets the existence of u ∈ BV (IRN ) which is zero outside of Ω, and satisfies,
by lower semicontinuity

λ1 ≤
∫

Ω
|∇u|+

∫
∂Ω
|u| ≤ limε→0

∫
Ω
|∇uε|1+ε = limε→0λε ≤ λ1.

This implies that
∫

IRN |∇u| = lim
∫

IRN |∇uε|. On another hand, one has that
σε is bounded in every Lk for k <∞, then, it converges for a subsequence,
in every Lk(Ω) weakly, to some σ ∈ ∩kLk. In fact, σ ∈ L∞, since |σ|∞ ≤
lim sup |σε| 1+ε

ε
≤ 1. This implies that σ ∈ L∞(Ω) with a norm less than 1.

Passing to the limit in the equation satisfied by uε one obtains that

−divσ − λ1 = 0 (10)

There remains to prove that σ.∇u = |∇u| in Ω and σ.~n(u) = −u on ∂Ω.
First using Proposition 1, one has |σ.∇u| ≤ |∇u|. Secondly, multiplying the
equation (10) by u and integrating over Ω one obtains∫

Ω
σ.∇u+

∫
∂Ω
σ.~n(−u)− λ1

∫
Ω
u = 0

This implies that∫
Ω
σ.∇u+

∫
∂Ω
σ.~n(−u) =

∫
IRN
|∇u| =

∫
Ω
|∇u|+

∫
∂Ω
|u|

and then σ.∇u = |∇u| in Ω and σ.~n(u) = −u on ∂Ω. Finally u is a solution
for (2) and we have obtained in the same time that λε → λ1.

Remark 5 One could have used duality and convex analysis, as developped
by Ekeland and Temam in [20], to find the partial differential equation sat-
isfied by u.

Remark 6 One proves in [14] that among the eigenfunctions there exists
the characteristic function of some set E. This will be useful when we shall
consider particular sets Ω (see the examples proposed below).

Proposition 9 Suppose that λ ≥ λ1 and that u is some nonnegative eigen-
function associated to λ, say{

−divσ(u)− λ = 0
σ(u).∇u = |∇u| in Ω ∪ ∂Ω

Then, λ = λ1.

11



Proof
Suppose that φ ≥ 0 is some eigenfunction for the first eigenvalue λ1.

Suppose that there exists some u ≥ 0 which satisfies for λ ≥ λ1{
−div(σ(u))− λ = 0 in Ω
σ.∇u = |∇u| in Ω, σ.~nu = −u on ∂Ω

Substracting the equation satisfied by u to the one satisfied by φ, multiplying
by φ and integrating over Ω, one gets∫

Ω
(σ(u)− σ(φ)).∇φ+

∫
∂Ω

(σ(φ)− σ(u)).~nφ = (λ− λ1)
∫

Ω
φ

The two integrals on the left hand side are negative, hence one gets that
(λ− λ1)

∫
Ω φ ≤ 0, which implies that λ = λ1.

Proposition 10 Suppose that φ is an eigenfunction for the first eigenvalue
λ1, φ ≥ 0. Then, φ ∈ L∞(Ω) and for all f strictly increasing and C1, such
that f(0) = 0, f(φ) is also an eigenfunction for λ1.

Proof : One uses Propositions 6 and 7.
Example

Suppose that B(0, R) is a bounded open ball in IRN . Then, the only
eigenfunctions are the constants and λ1 = N

R .
Indeed, let σ(x) = − ~x

R . σ satifies |σ| ≤ 1 in B(0, R), and

σ.∇(cte) = 0

inside Ω, and
σ~.n(−cte) = |cte|

for |x| = R. Since −divσ = N
R , this proves that the constant are eigen-

functions for the eigenvalue N
R . Using Proposition 9, necessarily, N

R is the
first eigenvalue. To see that the only eigenfunctions are the constant func-
tions, suppose that ψ is another eigenfunction, and multiply the equation
−div(σ) = N

R by ψ, with σ defined above. Then one obtains that∫
B
σ.∇ψ +

∫
∂B
ψ =

N

R

∫
B
ψ

Since ψ is a solution,

N

R

∫
B
ψ =

∫
B
|∇ψ|+

∫
∂B
ψ
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and then
σ.∇ψ = |∇ψ|

in Ω. This implies since |σ| < 1 inside Ω, that∇ψ = 0 in Ω and then ψ = cte.
Let us observe that the same result holds with a crown B(0, R2)−B(0, R1)
in place of a ball. The fact that constant functions are eigenfunctions is
linked to of the euclidian structure of the ball and some of related sets : For
example, the square C =]− 1, 1[2 does not admit the constant functions as
eigenfunctions for the first eigenvalue. One can prove that λ ≤ 7+π

4

3+ 3
4

+ π
16

<

2 = |∂C|
|C| . Indeed, let us consider the set E = C − C1 where C1 is

C1 = {−1 ≤ x ≤ −1
2
, y ≥ 1

2
, (x+

1
2

)2 + (y − 1
2

)2 ≥ 1
4
}

One can compute
|∂E| = 7 +

π

4

|E| = 3 +
3
4

+
π

16
and if one takes u to be the characteristic function of E, u ∈ BV (C) with∫

C |∇u|∫
C |u|

=
|∂E|
|E|

=
7 + π

4

3 + 3
4 + π

16

One can prove with similar arguments that for all rectangles eigenfunctions
cannot be constant.
One can also see the more complete results in [3] and [4].

We end this section by establishing a condition which permits to ensure
that λ1 = |∂Ω|

|Ω| .

Proposition 11 Suppose that there exists some eigenfunction φ for the first
eigenvalue λ1 which satisfies φ > 0 almost everywhere on ∂Ω. Then λ1 =
|∂Ω|
|Ω| and the constants are eigenfunctions for the first eigenvalue.

Proof : Since φ > 0 on ∂Ω, the equation σ.~n(−φ) = φ almost everywhere
on ∂Ω implies that σ.~n = −1 almost everywhere on ∂Ω. Let us observe
then that φ+K is also an eigenfunction for every constant K > 0. Indeed
σ(φ+K) = σ(φ) satisfies

σ(φ+K).∇(φ) = |∇φ| in Ω
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and
σ(φ).~n(−(φ+K)) = φ+K

on the boundary. Then, one has

λ1

∫
Ω

(φ+K) =
∫

Ω
|∇(φ+K)|+

∫
∂Ω
|φ+K|

=
∫

Ω
|∇φ|+

∫
∂Ω
|φ|+K|∂Ω|

This implies, using the fact that φ is an eigenfunction, that

λ1K|Ω| = K|∂Ω|

Once one knows that λ1 = |∂Ω|
|Ω| , it is obvious that the constant are eigen-

functions.

3.2 The one dimensional case

Proposition 12 Suppose that Ω =]0, 1[. Then, the first eigenvalue equals
2. The only eigenfunctions for the first eigenvalue are the constants.

Proof of Proposition 12
We begin to prove that λ1 = 2. For that aim, suppose that u ∈

W 1,1
0 (]0, 1[), then for every x ∈]0, 1[

u(x) =
∫ x

0
u′(t)dt

u(x) = −
∫ 1

x
u′(t)dt

From this one gets that for every x ∈]0, 1[

2|u(x)| ≤
∫ 1

0
|u′(t)|dt

and integrating over ]0, 1[

2
∫ 1

0
|u| ≤

∫ 1

0
|u′|

This implies that λ1 ≥ 2. For the reverse inequality take the sequence

un = nxχ[0, 1
n

] + χ[ 1
n
,1− 1

n
] + n(1− x)χ[1− 1

n
,1]

14



One has

u′n = nχ[0, 1
n

] − nχ[1− 1
n
,1],

hence ∫ 1

0
|u′n| = 2

Since
∫ 1

0 |un| = 1− 1
n → 1, one gets the result.

We now prove that the only eigenfunctions for λ1(= 2) are constant
functions.

An eigenfunction φ must satisfy

−σ′ = 2

φ′σ = |φ′| in ]0, 1[

−σ(1)φ(1) = |φ(1)|

σ(0)φ(0) = |φ(0)|

The equation satisfied by σ implies that there exists α ∈ [−1, 1], such
that

σ(x) = α− 2x

Since σ has values in [−1, 1], necessarily α = 1. As a consequence σ(x) ∈
]− 1, 1[ for x ∈]0, 1[, hence φ′ = 0 in ]0, 1[. Finally φ = cte and it is easy to
verify that every constant is a solution of the relaxed problem

inf
φ∈BV (]0,1[),

∫
Ω
|φ|=1
{
∫ 1

0
|φ′|+ |φ(0)|+ |φ(1)|}

4 Properties of the solutions. Necessary condi-
tions on f and the first eigenfunctions

Let f be some continuous function on Ω.

Proposition 13 Suppose that u is a solution for eqλ for λ ≥ λ1, and that
1 < q ≤ N + 1. Then u ∈ L∞(Ω).

15



Using first part in Proposition 7, one gets that u ∈ Lk for all k <∞. Then
−divσ(u) = λ + fuq−1 ∈ Ls for all s, hence using once more Proposition 7
in its second part, one gets u ∈ L∞.

Theorem 6 Suppose that for λ > λ1 there exists a nonnegative solution
to the p.d.e. eqλ. Then, if φ is some nonnegative eigenfunction for the
eigenvalue λ1,

∫
Ω fφ

q < 0.
Suppose that λ = λ1, and that there exists a nontrivial solution to eqλ1.

then Ω+ 6= ∅.

Proof
Let ε > 0 be given. Substract the equation satisfied by φ from the

one satisfied by u, and multiply by φq

(u+ε)q−1 which belongs to BV ( since
φ ∈ L∞). Using Proposition 8 one has

(σ(u)− σ(φ)).∇
(

φq

(u+ ε)q−1

)
≤ 0

and since

φq

(u+ ε)q−1
+ (σ(u).~n)

φq

(u+ ε)q−1
≥ 0 on ∂Ω

one obtains after integrating over Ω and using generalized Green’s formula
in 1 :

(λ− λ1)
∫

Ω

φq

(u+ ε)q−1
≤ −

∫
Ω
f

uq−1

(u+ ε)q−1
φq (11)

Let us observe that the right hand side of (11) converges when ε goes to
zero, (using the dominated convergence theorem) to the limit−

∫
x,u(x)>0 fφ

q.
On the other hand, the left hand side is increasing and nonnegative, hence

it is convergent. This implies that
φq

uq−1
is integrable. Let us denote by α

the L1 function such that φq = αuq−1. Then∫
x,u(x)>0

fφq =
∫
x,u(x)>0

fαuq−1 =
∫

Ω
fαuq−1 =

∫
Ω
fφq

(In the previous inequalities, one has used q > 1). One has finally obtained
that any nonnegative eigenfunction φ for the first eigenvalue λ1 satisfies∫

Ω fφ
q < 0.

16



Suppose now that λ = λ1, let u be a nonnegative, nontrivial solution to
eqλ1 . Multiplying the equation by u, one gets

∫
Ω fu

q ≥ 0 and since it cannot
be zero because u is not an eigenfunction, one has

∫
Ω fu

q > 0. In particular
Ω+ 6= ∅.

Let us note that one can have solutions for λ = λ1 and
∫

Ω fφ
q = 0 :

Suppose that k > 1, that B(0, k) is a bounded open ball in IRN . We
have already seen that the eigenfunctions are the constants and λ1 = N

k .
Let us define σ as

σ(x) =

{
−~x if |~x| ≤ 1
− ~x
|x| if |x| ∈ [1, k]

σ satifies |σ| ≤ 1, and
σ.∇(cte) = 0

inside Ω, and
σ~n(−cte) = |cte|

for |x| = k. One has

−div(σ) =
N

k
+ f

where

f =

 N
(
1− 1

k

)
if |x| ≤ 1

N−1
|x| −

N
k 1 ≤ |x| ≤ k

One can check that
∫
B(0,k) f = 0, and the previous equations prove that

u = cte is solution.

Proposition 14 Let N be an integer, N ≥ 2. Suppose that φ is some
nonnegative eigenfunction for λ1 and that u is some nonnegative solution
for eqλ, λ > λ1. Then, there exists α ∈ L∞(Ω) such that φ = αuq−1.

Proof of Proposition 14.
We begin as in the proof of Theorem 6 : Let us multiply the equation

by
φ

(u+ ε)q−1
and integrate over Ω. One obtains

∫
Ω

(σ(u)− σ(φ)).∇
(

φ

(u+ ε)q−1

)
+

∫
∂Ω

(−σ(u) + σ(φ)).~n
(

φ

(u+ ε)q−1

)
+

+ (λ1 − λ)
∫

Ω

φ

(u+ ε)q−1

=
∫

Ω
fφ

uq−1

(u+ ε)q−1

17



the right hand side tends to
∫
x,u(x)>0 fφ, and using the negativity of

∫
Ω

(σ(u)− σ(φ)).∇
(

φ

(u+ ε)q−1

)
,

of
∫
∂Ω

(−σ(u) + σ(φ)).~n
(

φ

(u+ ε)q−1

)
and the negativity of (λ1 − λ)

∫
Ω

φ

(u+ ε)q−1
,

one gets that limε→0

∫
Ω

φ

(u+ ε)q−1
exists. This implies that according to the

monotone convergence theorem of Lebesgue, the function
φ

(u)q−1
is in L1(Ω).

Suppose that we have proved that for j ≤ k,
φj

u(q−1)j
= αj ∈ L1(Ω), and let

us multiply the equation in u by
φk+1

(u+ ε)(q−1)(k+1)
. One obtains

(λ− λ1)
∫

Ω

φk+1

(u+ ε)(q−1)(k+1)
≤ −

∫
Ω
fuq−1 φk+1

(u+ ε)(q−1)(k+1)

The right hand side tends to the finite limit
∫

Ω fφαk when ε → 0. This

implies that
φk+1

u(q−1)(k+1)
= αk+1 ∈ L1(Ω) and

∫
Ω
αk+1 ≤

|f |∞|φ|∞
λ− λ1

∫
Ω
αk ≤ C

(∫
Ω
αk+1

) k
k+1

|Ω|
1
k

From this one obtains that (
∫

Ω αk+1)
1
k+1 ≤ C and then

φ

uq−1
∈ L∞(Ω).

More precisely ∣∣∣∣ φ

uq−1

∣∣∣∣
∞
≤ |f |∞|φ|∞

(λ− λ1)
.

4.1 Properties of the solutions in the one dimensional case.
Some explicit examples

Proposition 15 Suppose that Ω =]0, 1[, and that u is some nonnegative
solution for eqλ, λ > λ1. Then, u is bounded from below by a positive
constant.

Proof of Proposition 15
Let us substract the equation satisfied by φ to the equation satisfied by

u, multiply by
1

(u+ ε)q−1
and integrate over ]0, 1[ One obtains

18



∫ 1

0
(σ(u)− σ(φ))

(
1

(u+ ε)q−1

)′
+
−σ(u)(1)− 1
(u(1) + ε)q−1

+
σ(u)(0)− 1

(u(0) + ε)q−1
+

+ (λ1 − λ)
∫ 1

0

1
(u+ ε)q−1

=
∫ 1

0
f

uq−1

(u+ ε)q−1
.

Using Theorem 6 with φ = 1, one sees that the left hand side is the sum
of three negative quantities, the right hand side tends to a finite limit∫
x,u(x)>0 f , and then, using the Lebesgue’s monotone convergence theo-

rem, one obtains that
∫ 1

0

1
(u+ ε)q−1

tends to a finite limit, hence
1

uq−1
∈

L1(]0, 1[).
Suppose that one has proved that for k ∈ IN, u−k(q−1) ∈ L1. Mutiplying

the substracted equation by
1

(u+ ε)k(q−1)
, one gets that

(λ− λ1)
∫ 1

0

1
(u+ ε)k(q−1)

≤ −
∫ 1

0
f

uq−1

(u+ ε)k(q−1)
≤ |f |∞|u+ ε|k−1

L(k−1)ε .

From this one gets that u−k(q−1) ∈ L1, finally

|u−q+1|k ≤
|f |∞
|λ− λ1|

.

This implies that
1
u
∈ L∞, finally

u ≥
(
λ− λ1

|f |∞

) 1
(q−1)

Examples:
As we shall see in the fifth section, one is able to prove that when q is

subcritical and for λ = λ1, eqλ possesses at least one solution, and for λ > λ1

and λ sufficiently close to λ1, there are at least two solutions . We present
here particular solutions in the following case : Ω =]0, 1[, λ = λ1(= 2). In a
second time, we present an explicit resolution in the case λ > λ1, for which
we exhibit two solutions.

19



Let Ω =]0, 1[, λ = λ1(= 2), q <∞: Assume that α is some real in ]0, 1[,
and

f =

{
c1 on [0, α[
c2 on [α, 1]

where c1 > 0, c2 < 0 and∫ 1

0
f = c1α+ (1− α)c2 < 0

Let us define the function

u =


(

2(1− α)
αc1

) 1
q−1

on ]0, α[(−2
c2

) 1
q−1

on [α, 1[

One has

u′ = (
(−2
c2

) 1
q−1

−
(

2(1− α)
αc1

) 1
q−1

)δα = (u2 − u1)δα

where δα denotes the Dirac measure on the point α. Then, u is a solution
for the equation

−σ′ = 2 + fuq−1

σu′ = |u′| on ]0, 1[

Indeed σ defined by

σ =

 1− 2
α
x on [0, α]

−1 on [α, 1[

satifies σ(α) = −1, and then,

σu′ = σ(α)(u2 − u1)δα = |u2 − u1|δα

since u2 < u1. Moreover the boundary conditions are satisfied, since σ(0) =
1 and σ(1) = −1 imply

u1 = σ(0)u1

and
u2 = σ(1)(−u2)
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Suppose now that c1 < 0, c2 > 0 and c1α+ (1− α)c2 < 0. A solution is
given by

u =


(−2
c1

) 1
q−1

on [0, α[(
2α

(1− α)c2

) 1
q−1

on [α, 1[

Indeed, σ defined by

σ =

{
1 on [0, α]

−1 + 2
1−α(1− x) on [α, 1]

is a solution.

Remark 7 As we pointed out in the proof of Theorem 1, the condition∫ 1
0 f < 0 is not necessary. Suppose that∫ 1

0
f = c1α+ (1− α)c2 = 0

with c1 > 0, c2 < 0. Then, the constant

u =
(

2(1− α)
αc1

) 1
q−1

is a solution for λ = λ1, since σ defined by

σ =

 1− 2
α
x on [0, α]

−1 on [α, 1[

satisfies σ.u′ = 0 = |u′| and σ(1) = −1, and σ(0) = 1. This proves that the
condition

∫ 1
0 f ≤ 0 is optimal when λ = λ1.

We now assume that λ > λ1 = 2, and exhibit two solutions for λ suffi-
ciently close to λ1. Suppose that

f =

{
c1 on [0, α[
c2 on [α, 1]

where c1 and c2 satisfy c1 > 0, c2 < 0, and

c1α+ (1− α)c2 < 0
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Let us define ε = λ− 2, and assume that ε is small enough in order that

ε <
2
α
− 2

and

ε <
2
α

∫ 1
0 f

(c2 − c1)

Define

u =

(
−ε∫ 1
0 f

) 1
q−1

Then we check that u is a solution. Indeed

σ(x) =

{
1− (2 + ε+ c1u

q−1)x on ]0, α[
−1 + (1− x)(2 + ε+ c2u

q−1) on ]α, 1[

is continuous, has values in ]− 1, 1[, for x ∈]0, 1[, hence

σu′ = |u′|

in ]0, 1[, and σ(1) = −1, σ(0) = 1 imply that the boundary conditions are
satisfied. Finally by construction,

−σ′ − (2 + ε) = fuq−1

We now present a solution such that
∫ 1

0 fu
q > 0. Suppose that c1 > 0,

c2 < 0, c1α + (1− α)c2 < 0, and take ε <
2(1− α)

α
, ε <

2
∫ 1
0 f

α(c2 − c1)
, then u

defined by

u =



(
2
α − 2− ε

c1

) 1
q−1

on [0, α[(−(2 + ε)
c2

) 1
q−1

on [α, 1[

solves the problem

5 Non existence results

Theorem 7 Let us suppose that λ is large. Then, there is no solution to
eqλ.
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Proof
Let B be an euclidian ball on which f > 0, and let µ? and ψ be solutions of
the eigenvalue problem

µ? = inf
u∈BV (B),

∫
B
|u|=1
{
∫
B∪∂B

|∇u|},

One knows by the results in section 3 that µ? = |∂B|
|B| and that the positive

constant are minimizers for µ?. Suppose that there exists a solution u for
eqλ with λ > µ?. Then

−div(σ(u))− λ ≥ 0 in B,

with
σ(u).∇u = |∇u| on Ω.

Integrating this over B, one obtains

−
∫
∂B
σ(u).~n ≥ λ|B|,

which implies since |σ(u).~n| ≤ 1 that

λ ≤ |∂B|
|B|

,

a contradiction.

Remark 8 This has also the following consequence : If eqλ possesses a
solution then λ ≤ inf{B, f>0 on B}

|∂B|
|B| .

We now prove that the set of λ for which eqλ possesses a solution is
an intervall. To prove this kind of result, one usually uses an argument of
sub and supersolutions, which is a consequence of the following result : We
suppose here that

f(x, u) = f(x)uq−1 + λ,

we consider the equation{
−div(σ) = f(x, u)
σ.∇u = |∇u| on Ω ∪ ∂Ω

(12)

with q > 1, λ ≥ λ1 with λ1 the first eigenvalue for minus the ”1-Laplacian”
on Ω.
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Theorem 8 Suppose that there exists u and u which are respectively super
and subsolutions of (12). Suppose in addition that there exists C > 0 such
that

0 ≤ u ≤ u ≤ C

Then, there exists a solution to (12) which is such that u ≤ u ≤ u.

The proof of this result can be found in [14]. It uses essentially perturbed
variational problems and comparison of solutions, as it is done in [23].

To apply this theorem we need to observe first that if there exists a
solution uλ′ for eqλ′ , and λ′ > λ1, then, there are subsolutions for eqλ.
Indeed, for ε > 0 small, if φ is some nonnegative first eigenfunction, εφ is a
subsolution for eqλ, since one has σ(εφ) = σ(φ), and then

−divσ(εφ)− λ = λ1 − λ ≤ f(εφ)q−1

for ε small enough, using the fact that f is bounded.
On the other hand uλ′ is a supersolution for eqλ. We prove then that

uλ′ is bounded from below by some subsolution.

Suppose that N = 1, then, using Proposition 15, uλ′ >
λ′ − λ1

|f |∞
and then,

for all constant (eigenfunction) φ, there exists ε > 0 such that uλ′ ≥ εφ.
Suppose that N ≥ 2, then 1

q−1 ≥ 1 and φ
1
q−1 is an eigenfunction. Choosing

ε < 1

|α|
1
q−1
∞

where φ = αuq−1
λ′ , and α is given by Proposition (14), one has

uλ′ ≥ εφ
1
q−1 .

6 Some existence’s results in the subcritical case

In all that section we assume that q < 1? = N
N−1 .

Theorem 9 Suppose that Ω+ and Ω− are 6= ∅ and that every nonnegative
eigenfunction φ for the first eigenvalue λ1 satisfies

∫
Ω fφ

q < 0. Define

λ?q = inf
u∈BV (Ω), |u|1=1,

∫
Ω
f |u|q=0

{
∫

Ω
(|∇u| − λ1|u|) +

∫
∂Ω
|u|}

and for λ ≥ λ1, the two infima

mq(λ) = inf
u∈BV (Ω),

∫
Ω
f |u|q=−1

{
∫

Ω
(|∇u| − λ|u|) +

∫
∂Ω
|u|}
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and
pq(λ) = inf

u∈BV (Ω),
∫

Ω
f |u|q=1

{
∫

Ω
(|∇u| − λ|u|) +

∫
∂Ω
|u|}.

Then λ?q is > 0 and achieved, and for λ ∈ [λ1, λ1 + λ?q ], mq(λ) < 0 and is
achieved, mq(λ1) = 0, pq(λ) > 0 and is achieved.

Remark 9 Of course, using the density result in Proposition (2) the in-
fimum defining mq(λ), pq(λ) and λ?q can be taken on W 1,1

0 (Ω) in place of
BV (Ω).

Proof
We begin to prove that λ?q is positive and achieved. Suppose that (un)

is a minimizing sequence defining λ?q , un ∈ W
1,1
0 (Ω). One can assume that

un ≥ 0. Then, the extension of un by zero outside Ω is bounded in BV (IRN ).
Extracting from it a subsequence, still denoted un for simplicity, one obtains
that un ⇀ u in BV (IRN ) weakly. u is nonnegative and is zero outside Ω.
Using lower semicontinuity for the weak topology, one has

∫
IRN
|∇u| =

∫
Ω
|∇u|+

∫
∂Ω
|u| ≤ limn→∞

∫
IRN
|∇un| =

∫
Ω
|∇un|.

Since q is subcritical, the embedding of BV (Ω) into Lq(Ω) is compact and
then

∫
Ω fu

q = 0. Suppose that λ?q = 0, then, one would get u a nonnegative
eigenfunction for the eigenvalue λ1 such that

∫
Ω f |u|q = 0, a contradiction.

Finally λ?q > 0. Suppose now that λ ∈]λ1, λ1 + λ?q [. Let us prove that
mq(λ) > −∞. If not, one would have a sequence un ≥ 0, un ∈ W 1,1

0 (Ω),
such that |un|1 → ∞, and

∫
Ω |∇un| − λ|un|1 → −∞. Let us extend un by

zero outside Ω, and define wn = un
|un|1 . wn is a nonnegative bounded sequence

in BV (IRN ), which is zero outside of Ω. Extracting from it a subsequence,
one gets that it converges to some w ∈ BV (IRN ) weakly. w is zero outside
Ω, satisfies |w|1 = 1 and since q is subcritical

∫
Ω fw

q = 0. In the same time
by lower semicontinuity one has∫

Ω
|∇w|+

∫
∂Ω
|w| − λ

∫
Ω
|w| =

∫
IRN
|∇w| − λ ≤ 0,

which contradicts the assumption λ ∈ [λ1, λ1 + λ?q [.
Let us observe that the same arguments prove that every minimizing se-

quence for mq(λ) is bounded in BV (IRN ). Extracting from it a subsequence,
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and using lower semicontinuity for the vague topology, one gets by passing
to the limit, the existence of a minimizer uq(λ) for mq(λ). Observing that
if φ is some nonnegative eigenfunction for the first eigenvalue, φ

(−
∫

Ω
fφq)

1
q

is

admissible for mq(λ) one gets that mq(λ) < 0 as soon as λ > λ1. Let us
observe that mq(λ1) = 0.

We act for pq(λ) as for mq(λ), more precisely we are able to prove in the
same manner that pq(λ) > −∞ and it is achieved.

We want to prove that any nonnegative minimizer for mq(λ) satisfies the
p.d.e.

−div(σ(u))− λ = −mq(λ)fuq−1, (13)

where |σ|L∞(Ω) ≤ 1, σ.∇u = |∇u| in Ω, σ.~nu = −u on ∂Ω. For that aim, let
us introduce for q fixed, for ε > 0 given and small, the following variational
problem

mε(λ) = inf
u∈W 1,1+ε

0 (Ω),
∫

Ω
f |u|q=−1

{
∫

Ω
|∇u|1+ε − λ

∫
Ω
|u|}.

This problem possesses a minimizer, since the functional involved is coercive
on the space W 1,1+ε

0 (Ω). Let us observe that limε→0mε(λ) = mq(λ). Indeed,
let δ > 0 and ε0 > 0 be given and u be in W 1,1+ε0

0 (Ω), , such that
∫

Ω f |u|q =
−1 and ∫

Ω
|∇u| − λ

∫
Ω
|u| ≤ mq(λ) + δ.

Then
∫

Ω |∇u|1+ε →
∫

Ω |∇u| when ε → 0, hence limε→0mε(λ) ≤ mq(λ) + δ.
For the reverse inequality, let uε be a nonnegative minimizer for mε(λ).
Suppose for a while that one has proved that uε is bounded in W 1,1+ε(Ω).
Then, denoting still by uε the extension of uε by zero outside of Ω, and
extracting from it a subsequence, one has after passing to the limit the
existence of a nonnegative u ∈ BV (IRN ), which is zero outside of Ω, and
satisfies

∫
Ω f |u|q = −1, (since q is subcritical and using the compactness of

the Sobolev embedding from BV (Ω) into Lq(Ω) for Ω bounded). By lower
semicontinuity for the weak topology of the BV norm in IRN , one has

∫
Ω
|∇u|+

∫
∂Ω
|u| =

∫
IRN
|∇u| ≤ lim

∫
IRN
|∇uε|1+ε = limε→0

∫
Ω
|∇uε|1+ε.

This implies that
mq(λ) ≤ limε→0mε(λ).
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Let uε be a nonnegative minimizer for the problem defining mε(λ). It satis-
fies the following p.d.e.

−div(σε(uε))−
λ

1 + ε
= −m′ε(λ)fuq−1

ε , (14)

with m′ε(λ) = mε(λ) + ελ
1+ε

∫
Ω u

1+ε
ε . Let us note that σε = |∇uε|ε−1∇uε

is bounded in L
1+ε
ε (Ω). Then, it converges, up to a subsequence, in ev-

ery Lk(Ω) weakly for all k < ∞, towards some σ ∈ ∩kLk(Ω). Using
lim sup |σε| 1+ε

ε
≤ 1, one gets that σ ∈ L∞ with some L∞ norm less than

1. On the other hand, passing to the limit in (14) one has

−divσ − λ = −mq(λ)fuq−1.

Multiplying this last equation by u and integrating one obtains

∫
Ω

(σ · ∇u− λu) +
∫
∂Ω

(−σ · ~nu) = −mq(λ)
∫

Ω
fuq

= mq(λ) =
∫

Ω
(|∇u| − λu) +

∫
∂Ω
|u|.

From this one gets that σ · ∇u = |∇u| and σ · ~nu = −u on ∂Ω. Finally u
satisfies (13).

There remains to prove that the sequence uε is bounded in BV (IRN ). It
suffices to establish that is is bounded in L1(Ω). Suppose by contradiction
that

∫
Ω uε →∞. Then, for ε small enough

∫
Ω uε > 1. and then (

∫
Ω uε)

1+ε ≥∫
Ω uε. By defining wε = uε∫

Ω
uε

, one has

∫
IRN
|∇wε|1+ε − λ =

∫
IRN

|∇uε|1+ε

(
∫
uε)1+ε

− λ

≤
∫

IRN |∇uε|1+ε∫
uε

− λ

≤ mε(λ)∫
Ω uε

.

The limit of the last quantity on the right is negative, finally ∇wε is
bounded in L1+ε(Ω), in particular wε is bounded in BV (IRN ), hence one
may extract from it a subsequence, still denoted wε, such that wε ⇀ w in
BV (IRN ) weakly. Since q is subcritical, one has

∫
Ω fw

q = 0 and by lower
semicontinuity

27



∫
IRN

(|∇w| − λw) ≤ 0.

This contradicts the choice of λ since λ ∈ [λ1, λ1 + λ?q [, and |w|1 = 1. From
this one can conclude that (uε) is bounded in L1(Ω).

As we did for mε(λ) and mq(λ), one can prove that pq(λ) = limε→0pε(λ).
In order to see that pq(λ) > 0, let us argue as in the proof of Theorem 1.
One has for ε > 0 given

(λ− λ1)
∫

Ω

φq

(u+ ε)q−1
+ pq(λ)

∫
Ω
f

φquq−1

(u+ ε)q−1
≤ 0.

Using the Lebesgue dominated convergence theorem, one obtains after pass-
ing to the limit when ε goes to zero that

(λ− λ1)
∫

Ω

φq

uq−1
+ pq(λ)

∫
Ω
fφq ≤ 0.

From this one gets that pq(λ) > 0 for λ > λ1. For λ = λ1 the infimum
defining pq(λ1) cannot be zero, because it would contradicts the constraint∫

Ω fφ
q < 0. A minimizer for pq(λ1) provides then a nontrivial solution for

eqλ1 (up to a mutiplicative constant).

7 Existence’s result in the critical case

We suppose in this section that f ∈ C(Ω). Let us recall that the critical
exponent for the Sobolev embedding of W 1,1(Ω) into Lk(Ω) is 1? = N

N−1 .
Before giving the proof of the existence’s results in the critical case, let

us recall the concentration compactness lemma of P.L. Lions [26] in a form
convenient to our setting :

Lemma 1 Suppose that (un) is a sequence in BV (IRN ) which is compactly
supported in a fixed compact Ω. Suppose that un converges weakly in BV (IRN )
to some function u ∈ BV (IRN ). Then, there exist a subsequence of uε, de-
noted in the same manner, two nonnegative bounded measures µ and ν,
compactly supported in Ω, some numerable set {xi}, i ∈ IN, some sequences
(µi) and (νi) of nonnegative reals such that

|∇un|⇀ µ ≥ |∇u|+
∑
i

µiδxi ,
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|un|1
?
⇀ ν = |u|1? +

∑
i

νiδxi ,

in BV (IRN ) weakly, with

ν
1

1?

i ≤ K(N, 1)µi.

Remark 10 Let us note that the weak convergence of |∇un| towards µ im-
plies, since the measures are compactly supported, that∫

Ω
|∇un| →

∫
Ω
µ

and also ∫
Ω
|un|1

? →
∫

Ω
ν.

Let us define

λ? = inf
{u∈BV (Ω),

∫
Ω
f |u|1?=0,|u|1=1}

{
∫

Ω
(|∇u| − λ1|u|) +

∫
∂Ω
|u|}

Lemma 2
0 < λ̄ = limq→1?λ

?
q ≤ λ?

limq→1?mq(λ) ≤ m(λ)

Proof of lemma 2
To prove that λ? > 0, suppose by contradiction that λ? = 0. Let (un)
be a minimizing sequence for the problem defining λ?. One can assume as
usually that un ≥ 0. It is bounded in L1(Ω), hence in BV (Ω). Extending
by a now classical way un by zero outside of Ω, the extension, still denoted
un, is bounded in BV (IRN ) and using standard arguments, one can extract
from it a subsequence such that un ⇀ u, u ≥ 0 in BV (IRN ) weakly. One
has u = 0 outside of Ω,

∫
Ω |u| = 1 and by lower semicontinuity∫

IRN
|∇u| ≤ limn→+∞

∫
IRN
|∇un|

Finally using λ? = 0, ∫
IRN

(|∇u| − λ1|u|) ≤ 0 (15)
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and then this quantity is zero and equality holds in the previous inequalities.
In particular ∫

IRN
|∇u| = limn→+∞

∫
IRN
|∇un|

This implies that strong convergence holds in L1?(Ω) and then,
∫

Ω f |un|1
? →∫

Ω f |u|1
?

= 0. But from (15) u must be an eigenfunction for the eigenvalue
λ1, a contradiction.
The same process enables us to prove that

limq→1?λ
?
q > 0.

Indeed, suppose by contradiction that limq→1?λ
?
q = 0. Then, there exists

uq ∈W 1,1
0 (Ω),

∫
Ω fu

q
q = 0, uq ≥ 0, |uq|1 = 1 such that∫

Ω
(|∇uq| − λ1|uq|)→ 0

The extension of uq by zero outside of Ω is bounded in BV (IRN ), hence, by
extracting a subsequence, one gets that there exists u ∈ BV (IRN ) such that
u ≥ 0 is a weak limit of uq, u is zero outside of Ω,

∫
Ω u = 1, and by lower

semicontinuity ∫
IRN
|∇u| − λ1

∫
Ω
|u| ≤ 0.

One obtains as in the previous proof that∫
IRN
|∇u| = limq→1?

∫
IRN
|∇uq|,

and then
∫
Ω fu

q
q = 0 =

∫
Ω fu

1? = 0, but the previous identities prove that
u is an eigenfunction for the eigenvalue λ1, a contradiction. To prove that
limq→1?λ

?
q ≤ λ?, let δ > 0 and u ≥ 0 be in W 1,1

0 (Ω) such that
∫

Ω fu
1? = 0,

|u|1 = 1, and ∫
Ω
|∇u| − λ1 ≤ λ? + δ

Let qn be a sequence converging to 1?, such that λ?qn → lim supλ?q , and let
us consider the sets

IN = {n, ,
∫

Ω
fuqn = 0} ∪ {n,

∫
Ω
fuqn < 0} ∪ {n,

∫
Ω
fuqn > 0}
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Suppose that there exists an infinite sequence qn → 1? such that
∫

Ω fu
qn = 0,

then the result is obvious. If not there exists an infinite sequence qn → 1?

such that
∫

Ω fu
qn > 0, either there exists an infinite sequence such that∫

Ω fu
qn < 0. Suppose that we are in the first case and define α(qn) as the

real between 0 and 1, such that

α(qn)
∫

Ω
fuqn + (1− α(qn))

∫
Ω
fφqn = 0.

Finally define

vn =
(α(qn)uqn + (1− α(qn))φqn)

1
qn

|(α(qn)uqn + (1− α(qn))φqn)
1
qn |1

.

One has vn ∈ BV (Ω),
∫
Ω fv

qn
n = 0 and vn converges strongly in BV towards

u . As a consequence

limqn→1?λ
?
qn ≤ limJλ1,r(vn)→ Jλ1(u) = λ?

Suppose that we are in the second case, hence there exists an infinite se-
quence qn, qn → 1?, such that

∫
Ω fu

qn < 0. Since f is positive somewhere,
let v be in W 1,1

0 (Ω) such that
∫

Ω fv
1? > 0. Then, for q sufficiently close to

1?, one has
∫

Ω fv
q > 0. Let then α(qn) as the real between 0 and 1 such

that
α(qn)

∫
Ω
fuqn + (1− α(qn))

∫
Ω
fvqn = 0,

and define

vn =
(α(qn)uqn + (1− α(qn))vqn)

1
qn

|(α(qn)uqn + (1− α(qn))vqn)
1
qn |1

.

One has vn ∈ BV (Ω), vn tends strongly to u in BV (Ω),
∫

Ω fv
qn
n = 0, and we

get the same conclusion as in the first case. Finally one has obtained that
limq→1?λ

?
q ≤ λ?.

To end the proof of Lemma 2, let us note that one always has:

m(λ) ≥ limq→1?mq(λ)

Indeed, let δ > 0 be given, and u be such that u ∈ W 1,1
0 (Ω),

∫
Ω fu

1? = −1,
and ∫

Ω∪∂Ω
(|∇u| − λ|u|) ≤ m(λ) + δ
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Since
∫

Ω f |u|q → −1 when q goes to 1?, vq =
u

(−
∫

Ω f |u|q)
1
q

converges to u

in BV (Ω) strongly and is admissible for the problem defining mq(λ). The
same remarks hold true for pq(λ) and p(λ).

Theorem 10 Suppose that Ω+, Ω− are 6= ∅, that
∫

Ω fφ
1? < 0 for all non-

negative first eigenfunction φ, and that λ is close enough to λ1, then m(λ)
is achieved and m(λ) = limq→1?mq(λ). Suppose that

p(λ1)K(N, 1)(sup f)
1

1? < 1.

Then, for λ close to λ1, p(λ) is achieved and lim pq(λ) = p(λ).

Proof of theorem 10
We define

m̄ = limq→1?mq(λ)

m̄ ≤ m by Lemma 2, (possibly m̄ = −∞). Let uq be a nonnegative mini-
mizer for mq(λ). uq satisfies the p.d.e.

−divσ(uq)− λ = −mq(λ)fuq−1
q (16)

Suppose for a while that the extension of uq by zero outside of Ω is bounded
in BV (IRN ). Then m̄ > −∞. By extracting a subsequence, one obtains
that uq ⇀ u in BV (IRN ), u = 0 outside of Ω. The sequence σ(uq) is
bounded in L∞(Ω) with a norm less than 1, hence one may extract from it
a subsequence, still denoted σ(uq), such that σ(uq) tends weakly in L∞(Ω)
towards σ. σ has L∞ norm less than 1 and one has

−div(σ)− λ = −m̄fuq−1. (17)

Let µ , ν be bounded measures on IRN , xi ∈ IRIN, µi and νi as given in
Lemma 1. Let us multiply equation (16) by uqϕ, where ϕ ∈ D(IRN ), and
integrate over Ω. Passing to the limit, one obtains∫

Ω
(µϕ− λuϕ)−

∫
Ω
σ.∇ϕu = −m̄(

∫
Ω
fu1?ϕ+

∑
i

νif(xi)ϕ(xi)). (18)

On the other hand, multiplying equation (17) by uϕ, integrating over Ω and
substracting the result to (18), one obtains
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µ− σ.∇u = −m̄
∑
i

νif(xi)δi (19)

where the equation holds in Ω.
Let us remark here that when u ∈ BV and N ≥ 2 the measure ∇u is

orthogonal to any Dirac mass (see for example [13]). Let then

µ = g|∇u|+ µ⊥

be the Lebesgue Radon Nykodym decomposition of µ into a measure abso-
lutely continuous with respect to |∇u| and a measure orthogonal to it. Let
us observe that g ≥ 1, and µ⊥ ≥

∑
i µiδi, more precisally{

µ⊥ = −m̄
∑
i νif(xi)δi

g|∇u| = σ.∇u

One finally gets that

µ⊥ =
∑
i

µ′iδi = −m̄
∑
i

νif(xi)δxi

with µ′i ≥ µi. On another hand |σ|∞ ≤ 1 implies that (g − 1)|∇u| = 0 and
µ = limq→1? |∇uq| = |∇u|+

∑
i µ
′
iδi. One also has∫

Ω
fu1? +

∑
i

f(xi)νi = −1

and
µ′i = −m̄νif(xi).

As a consequence if f(xi) < 0, µ′i, µi are zero, and also νi = 0, so we are
done. Then f(xi) ≥ 0 for all i and then∫

Ω fu
1? = −1−

∑
i νif(xi) ≤ −1,

m(λ)(−
∫

Ω
fu1?)

1
1? ≤

∫
Ω∪∂Ω

|∇u| −
∫

Ω
λu = m̄−

∑
i

µ′i = m̄(−
∫

Ω
fu1?).

From this one obtains that

(−m̄)(−
∫

Ω
fu1?) ≤ −m(λ)(−

∫
Ω
fu1?)

1
1? .
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This implies that m̄ = m(λ) and
∫

Ω fu
1? = −1. Finally u realizes the

minimum in m(λ).
There remains to prove that uq is bounded in BV (IRN ). For that aim,

we prove the claim
Claim: One has limλ→λ1m(λ) = 0.
Proof of the claim :
One already has m(λ) ≤ m(λ1) for λ > λ1. Now let uλ be in W 1,1

0 (Ω),
uλ ≥ 0, such that

∫
Ω fu

1?
λ = −1 and

Jλ(uλ) ≤ m(λ) + (λ− λ1)

Suppose that |uλ|1 → +∞, and define wλ = uλ
|uλ|1 . wλ is bounded, nonneg-

ative and belongs to W 1,1
0 (Ω). Extending it by zero outside Ω, extracting

from it a subsequence, one obtains that there exists w ∈ BV (IRN ), w ≥ 0,
such that w = 0 outside of Ω, |w|1 = 1. Using lower semicontinuity, one has

0 ≤
∫

IRN
|∇w| − λ1 ≤ limλ→λ1

∫
IRN
|∇wλ| − λ ≤ 0

This implies both that
∫

Ω |∇w| = λ1 and limλ→λ1

∫
Ω |∇wλ| =

∫
Ω |∇w|. Then

the convergence of wλ is strong in L1?(Ω), and
∫

Ω fw
1? = 0. This contradicts

the assumption on the eigenfunctions for the eigenvalue λ1.
Finally uλ is bounded in W 1,1

0 (Ω) and by extracting from it a subse-
quence, using lower semicontinuity one gets that

0 ≤
∫

IRN
|∇u| − λ1

∫
Ω
|u| ≤ m(λ1) = 0

This yields the desired result.
As a consequence of the claim one may choose λ close enough to λ1 in

order that

|m(λ)|K(N, 1) sup f
1

1? < 1.

Let us prove under this assumption that (uq) is bounded in L1(Ω). If not,
|uq|1 tends to infinity. Define then wq = uq

|uq |1 The sequence (wq) is bounded
in BV (IRN ), hence one can extract from it a subsequence such that wq ⇀ w
in BV (IRN ). One has w = 0 outside of Ω, |w|1 = 1, and∫

IRN
(|∇w| − λ|w|) ≤ 0.
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Suppose first that
∫
Ω fw

1? = 0, then, this would contradict the choice of λ
with respect to λ?. If one had

∫
Ω fw

1? > 0, one would have

p(λ)
(∫

Ω
fw1?

) 1
1?

≤
∫

Ω∪∂Ω
|∇w| − λ

∫
Ω
|w| ≤ 0,

a contradiction, since p(λ) > 0.
Finally suppose that

∫
Ω fw

1? < 0. Applying the concentration compact-
ness principle of P.L. Lions, [26] there exist some nonnegative measures µ
and ν, some numerable set xi, xi ∈ Ω, some nonnegative numbers µi and νi
such that

|∇wλ|⇀ µ ≥ |∇w|+
∑
i

µiδxi

in BV (IRN ) weakly, and

|uλ|1
?
⇀ ν = |w|1? +

∑
i

νiδxi

in BV (IRN ) weakly, with

ν
1

1?

i ≤ K(N, 1)µi.

In particular

m(λ)(−
∫

Ω
fw1?)

1
1? ≤

∫
IRN
|∇w| − λ

∫
Ω
|w| ≤ −

∑
i

µi.

Let us note that one also has∫
Ω
fw1? +

∑
i

νif(xi) = 0.

As a consequence one gets

m(λ)(
∑
i

νif(xi))
1

1? ≤ −
∑
i

µi,

hence ∑
i

µi ≤ −m(λ)(
∑
i

νif(xi))
1

1? ≤ −m(λ) sup f
1

1?K(N, 1)
∑
i

µi.

By the assumption on −m(λ) one obtains that
∑
i µi = 0, hence νi = 0 and

also
∫

Ω fw
1? = 0, once more a contradiction. One has finally obtained that

(uq) is bounded in L1 and then in BV (IRN ).
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We now prove the second part of Theorem 10
Since p(λ) decreases when λ increases, supposing that

p(λ1)K(N, 1) sup f
1

1? < 1,

the same inequality holds with λ in place of λ1. Let us define

p̄ = limq→1?pq(λ) ≤ p(λ)

Let us note that p̄ is a real nonnegative number. Let uq be a solution for
pq(λ). uq satisfies the following p.d.e.{

−divσ(uq)− λ = pq(λ)fuq−1
q uq ≥ 0 in Ω,

σ(uq).∇uq = |∇uq|, on Ω ∪ ∂Ω
(20)

Following the first part of the proof, one can prove that uq is bounded in
BV (IRN ). Extracting from it a subsequence, and passing to the limit in
the p.d.e. satisfied by uq, one gets that there exists u ∈ BV (IRN ), u iqs
nonnegative, is zero outside of Ω and there exists σ, weak limit of σ(uq) in
L∞, |σ| ≤ 1, such that the equation

−divσ − λ = p̄fu1?−1 (21)

holds. By the concentration compactness lemma of P.L.Lions, there exist
some nonnegative measures µ and ν, some numerable set xi, xi ∈ Ω, some
nonnegative numbers µi and νi such that

|∇uq|⇀ µ ≥ |∇u|+
∑
i

µiδxi

in BV (IRN ) weakly, and

|uq|1
?
⇀ ν = |u|1? +

∑
i

νiδxi

in BV (IRN ) weakly, with

ν
1

1?

i ≤ K(N, 1)µi.

Multiply equation (20) by uqϕ with ϕ ∈ D(IRN ) and mutiply equation (21)
by uϕ. Substracting the two, one gets
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µ− σ.∇u = p̄
∑
i

νif(xi)δi. (22)

Let us remark first that p̄ 6= 0. If p̄ = 0 one would have

−divσ − λ = 0

and since µ = σ.∇u on Ω ∪ ∂Ω and |σ|∞ ≤ 1, one has σ.∇u = |∇u| on
Ω ∪ ∂Ω, hence from (22), |∇uq|⇀ |∇u| on IRN weakly. From this one gets
that

∫
Ω fu

1? = 1, and u is an eigenfunction for some λ. If λ > λ1, since
u is nonnegative, this contradicts the results in section 1. If λ = λ1 the
condition

∫
Ω fu

1? = 1 is a contradiction.
Finally p̄ 6= 0. By the Lebesgue decomposition, one can write

µ = g|∇u|+ µ⊥

with g ≥ 1 and µ⊥ a measure orthogonal to ∇u. Then, one derives from
(22) that {

µ⊥ = p̄
∑
i νif(xi)δi,

g|∇u| = σ.∇u.

One finally gets that

µ⊥ =
∑
i

µ′iδi

for some µ′i ≥ µi. On another hand |σ|∞ ≤ 1 implies that (g − 1)|∇u| = 0
and µ = limq→p? |∇uq| = |∇u| +

∑
i µ
′
iδi. Suppose that f(xi) < 0, then,

the previous calculation implies that µ′i = 0, hence µi = 0 and νi also.
Define νf =

∑
i νif(xi). By the previous remark νf ≥ 0. Let us prove that

νf ∈ [0, 1 +
(
−m
p̄

)( 1

1− 1
1?

)
] = [0, γ]. For that aim, let us recall the relation

obtained by passing to the limit in the relation
∫

Ω fu
q
q = 1.∫

Ω
fu1? + νf = 1.

If
∫
Ω fu

1? ≥ 0 νf ∈ [0, 1]. If
∫

Ω fu
1? < 0, then

m(λ)(−
∫

Ω
fu1?)

1
1? ≤

∫
Ω
|∇u|+

∫
∂Ω
|u|+

∫
Ω

(−λ)|u| = p̄(
∫

Ω
fu?)
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From this one gets

p̄(−
∫

Ω
fu1?) ≤ −m(λ)(−

∫
fu1?)

1
1? .

This yields the desired result, using νf = 1−
∫

Ω fu
1? . Since νif(xi) ≥ 0 for

all i, one has νif(xi) ≤ γ for all i, and then

µi ≤ p̄νif(xi)

≤ p̄
νif(xi)
γ

γ

≤ p̄

(
νif(xi)
γ

)1− 1
1?

(νif(xi))
1

1? γ1− 1
1?

≤ p̄K(N, 1) sup f
1

1? µiγ
1− 1

1?

Using γ1− 1
1? =

1 +
(
−m
p̄

)( 1

1− 1
1?

)
1− 1

1?

≤ (1 + −m
p̄ ), one finally gets

µi ≤ p̄(1 +
−m
p̄

)K(N, 1) sup f
1

1? µi ≤ δµi

for some δ < 1. One obtains that µi = 0, hence νi = 0, the convergence of
uq towards u in BV (IRN ) is tight and then

∫
Ω fu

1? = 1, p̄ = p(λ) , u is a
minimizer for p(λ) and it satisfies eqλ, up to a constant.

8 Appendix : Some complements on weakly al-
most 1-harmonic functions

We propose here to give a quick proof of Proposition 7 and 8 that we recall
here

Proposition 16 Suppose that Ω is a bounded open set in IRN , which is
piecewise C1 and that u is almost 1-harmonic on Ω, then u ∈ Lt(Ω) for
all t < ∞. If in addition −div(σ) = f ∈ Lq(Ω) for some q > N , then
u ∈ L∞(Ω).

Proposition 17 Suppose that u and φ are nonnegative in BV (Ω)∩L∞(Ω),
and are almost weakly 1 harmonic in Ω. Then for all ε > 0, and for all
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k ≥ 1, q ≥ 1,

(σ(u)− σ(φ)).∇
(

φk

(u+ ε)q−1

)
≤ 0

Proof of Proposition 7
Let us define for M > 0 the truncation uM as

uM =

{
u if |u| ≤M
Mu
|u| if |u| ≥M

One can observe that uM is almost 1-harmonic and σ(u).∇uM = |∇uM | in
Ω ∪ ∂Ω. Indeed, let uε be as in Proposition3. One has

σε(uε).∇uMε = |∇(uMε )|1+ε

in Ω. The sequence uMε is bounded in W 1,1+ε(Ω). It converges to uM in
L1(Ω), hence uM ∈ BV (Ω) and uMε ⇀ uM in BV weakly. Using lower
semi-continuity,

|∇uM | ≤ limε→0|∇(uMε )|1+ε

= limε→0σε(uε).∇uMε
= σ(u).∇uM ,

the last equality being a consequence of generalized Green’s formula in
Proposition 1. Since |σ(u)| ≤ 1, one has obtained that σ(u).∇uM = |∇uM |
in Ω. Suppose now that x ∈ ∂Ω is such that u(x) 6= 0, then σ(u).~n(x) = −1
and also

σ(u)(x).~nuM (x) = −|uM (x)|

Let u be a solution of −div(σ) = f ∈ Lq(Ω), where σ(u).∇u = |∇u| in
Ω ∪ ∂Ω, multiply the equation by |uM |1?−1uM and integrate over Ω. One
obtains using Proposition 6∫

Ω
|∇(|uM |1?−1uM )|+

∫
∂Ω
|uM |1? =

∫
Ω
f |uM |1?−1uM .

Let C be some Poincare’s constant for the Sobolev embedding from W 1,1
0 (Ω)

into L1?(Ω). Then, for all u ∈ BV (Ω),

(∫
Ω
|u|1?

) 1
1?

≤ C
(∫

Ω
|∇u|+

∫
∂Ω
|u|
)
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Let m be some positive number and Gm be defined as

Gm = {x ∈ Ω, |f(x)| ≥ m}.

Choose m large enough in order that

|f |LN (Gm) ≤
1

2C

Then one gets(∫
|uM |(1?)2

) 1
1?

≤ C
(
m

∫
G−Gm

|uM |1? +
1

2C
(
∫
|uM |(1?)2

)
1

1?

)
One obtains letting M go to infinity that u ∈ L(1?)2

(Ω), with

1
2

(∫
Ω
|u|(1?)2

) 1
1?

≤ Cm
∫

Ω
|u|1?

Iterating this process, one gets that |u|(1?)n ∈ L1(Ω) for all n, and then
u ∈ Lt(Ω) for all t <∞.

We suppose now that f ∈ Lq for some q > N . Let us multiply the
equation −div(σ) = f by |uM |k−1uM , where uM denotes the truncation of
u at the level M . Let k be some integer > 1. One obtains after integrating
over Ω ∫

Ω
|∇(|uM |k−1uM )|+

∫
∂Ω
|uM |k =

∫
Ω
f |uM |k−1uM

Let q′ be the conjugate of q. Using Poincare’s inequality one gets

(∫
Ω
||uM |kq′ |

1?

q′

) q′
1?

≤ |f |q
C

(∫
Ω
|uM |kq′

) 1
q′

with some universal constant C. Taking k = 1?

q′ and passing to the limit

when M → +∞ one gets both that u ∈ L
(1?)2

q′ and |u|
1?
q′ ∈ BV (Ω) with(∫

Ω
||u|1? |

1?

q′

) 1
1?

≤
( |f |q
C

)q′ (∫
Ω
|u|1?

)
Iterating this process, and defining

αn =

(∫
Ω
|u|

1?
(

1?

q′

)n)( q′
1?

)n
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one gets
αn+1 ≤ βK

n−1
αn

with β =
(
|f |q
C

)q′
and K = q′

1? < 1. From this one obtains

αn+1 ≤ β
Kn−1
K−1 α0.

Finally u ∈ L∞ and
|u|1?∞ ≤ β

1
1−K |u|1?1? .

Proof of Proposition 8 .
Let φε and uε, as in the proof of Proposition 3. Denote by φ+

ε and u+
ε

the positive parts of φε and uε. Using Young’s inequality one has

Aε = k
(φ+
ε )k−1

(u+
ε + λ)q−1

(
1

1 + ε
|∇φε|1+ε −∇φε.σε(uε) +

ε

1 + ε
|∇uε|1+ε

)
≥ 0

and

Bε = (q − 1)
(φ+
ε )k

(u+
ε + λ)q

(
1

1 + ε
|∇uε|1+ε −∇uε.σε(φε) +

ε

1 + ε
|∇φε|1+ε

)
≥ 0

(If k = 1, replace φ+
ε by φε.) On the other hand one has

(σε(φε)− σε(uε)) . ∇
(

(φ+
ε )k

(u+
ε + λ)q−1

)
=

k(φ+
ε )k−1

(u+
ε + λ)q−1

(
|∇φε|1+ε − σε(uε).∇φε

)
− (1− q)(φ+

ε )ksign+uε

(u+
ε + λ)q

(
|∇uε|1+ε − σε(φε).∇uε

)
= Aε +Bεsign

+uε

− ε

1 + ε

(
|∇φε|1+ε + |∇uε|1+ε

)( k(φ+
ε )k−1

(u+
ε + λ)q−1

+
(q − 1)(φ+

ε )ksign+uε

(u+
ε + λ)q

)

Using the fact that
k(φ+

ε )k−1

(u+
ε + λ)q−1

+
(q − 1)(sign+uε)(φ+

ε )k

(u+
ε + λ)q

is bounded in

L∞(Ω) and |∇φε|1+ε + |∇uε|1+ε is bounded in L1(Ω) one gets that the weak

limit in BV (Ω) of (σε(φε)− σε(uε)) .∇(
(φ+
ε )k

(u+
ε + λ)q−1

) is nonnegative. Ob-

serve now that the sequence
(φ+
ε )k

(u+
ε + λ)q−1

tends to
φk

(u+ λ)q−1
in (BV ∩

L∞)(Ω) weakly. Since σε(φε)−σε(uε) tends to σ(φ)−σ(u) in Lq for all q <∞
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and divσε(φε) − divσε(uε) tends to div(σ(φ) − σ(u)) in LN , one gets that

(σε(φε)− σε(uε)) .∇
(

(φ+
ε )k

(u+
ε + λ)q−1

)
tends to (σ(φ)−σ(u)).∇

(
φk

(u+ λ)q−1

)
.

One has obtained the result.
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Diderot Editeurs, Arts et Sciences, Paris 1997.

[24] E. Hebey, M. Vaugon Existence and multiplicity of nodal solutions
for nonlinear elliptic equations with critical Sobolev growth. J. Funct.
Anal. 119 (1994), no. 2, 298–318.

[25] J.L. Lewis Regularity of the derivatives of solutions to certain degen-
erate elliptic equations, Indiana Math. Journal, 32 (1983), 849-858.
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